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Abstract: <p>In recent decades probing for the subtle indications of new physicsin<br>
experimental data has become increasingly difficult. The datasets have gotten<br>
much bigger, the experiments more complex, and the signals ever smaller. Success<br>
stories, like LIGO and Kepler, require a sophisticated combination of statistics<br>

and computation, coupled with an appreciation of both the experimental realities<br>
and the theoretical framework governing the data.<br>

<br>

In thistalk | will look broadly at data science in physics, and how and why it<br>

has taken an increasingly central role. I'll highlight specifically my current<br>

area of research, radio cosmology: discussing why it is one of the most<br>
challenging areas for data science, and describing my work developing optimal<br>
and efficient statistical methods for turning terabytes of timestreams into<br>
cosmology.</p>
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Data Seience in Radio
Cosmology
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Data Science

e Combination of:
Statistics
Signal processing
Machine learning
High performance computing

Physics (theory and experiment)
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THE END OF THEORY: THE DATA
DELUGE MAKES THE SCIENTIFIC
METHOD OBSOLETE
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Data Science in Science

e For Science

» Model fitting

» Model selection

e Tools:
» The fashionable stuff

» Machine learning (classification, regression...)
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Why now? Data acquisition...

Trends in Optical Astronomy Survey Data
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Data growth...

LHC data volume
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Why now?

e Huge increase in accumulation of data

o Volume and complexity means it is becoming specialised
just to do anything with it.
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LAIC

Need to identify which collisions are interesting
Each collision is described by many tens of parameters
Machine classification problem (Boosted Decision Trees)

» Trained on simulated data

»  Selects between events of interest and background events

Used in real-time in software triggers (LHCD)

Used for event selection for Higgs detection (CMS)

Gligorov 2014, CMS Collaboration 2012
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LIGO event detection

e Real-time matched filter
1) 1| 'l
» Effectively search against 2501 FibY WWWWWU
template waveforms [ — T owserved

—_ M1 ol:m.rvcu (shifted. mucllcdl

Look for peaks in likelihood
ratio, keep those that exceed
some false positive rate

LI — Numercal relativity

Keep only events coincident Reconstructed (wavelet
| I == ncconsirucl:l.u (te mptuh.]
within 15ms in both detectors

(~light travel time) J“WMWV‘“WV\WMW

Abbott et al. 2016
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Data lifecycle

e During acquisition

» Real-time phase

e Post-acquisition
» Basic results

» Processing to likelihood function

e Science
» Parameter estimation

» Synthesis with other data
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Accelerating Universe

Luminosity distance
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Probing Dark Energy

Acceleration ‘explained’ by dark energy (cosmological
constant, quintessence ...)

Expansion is governed by Friedmann equation

A : i 1z
H(2)* = Qm(l+ z)3 + QpEexp / (1+ w(:))ﬁ_—:]
0 =

Fundamental physics is contained within the equation of

state w(p) =p/p < —1/3
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Probing Dark Energy

e Construct likelihood function for dataset i.e.
Pr(supernovae|expansion)

e Use Markov-Chain Monte-Carlo to infer distribution
of relevant parameters

Union2.1 SN la
Compulation
willr SN
Systematics

e Propose parameters (wo, Wa, Qmy +-+)
e Generate expansion history

e Compare to data (likelihood), accept
parameters if likely

e Repeat until enough samples
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Baryon Acoustic Oscillations

CMB angular power spectrum
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Galaxy redshift surveys
Galaxy Correlation Function
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Sanchez etal. 2012

Redshift =
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21cm Intensity

Mapping
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Cosmological 21cm  wgwewm s

state flip
AR >
4

1420 MHz
A=21cm

21cm line is the transition between parallel and anti-
parallel spins of neutral Hydrogen

The ratio between the two occupancies determines the

spin temperature Ts
n1/no = (91/90) exp(=T+/Ts)

e We can observe the contrast relative to the CMB

Ts —

1l 7 el . -
ATl = 23.8 (T) ol 7 (1=t o LR o) (1 — 0y) [
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Hydrogen in the Universe

Dark ages

Reionisation

HI in galaxies

Djorgovski et al. (Caltech)
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21cm Intensity Mapping

e In 21cm the frequency gives the redshift.

e Observe the diffuse emission from many unresolved
galaxies
e Changes the game in telescope design:

» Previously: large field of view, large collecting area, large angular
resolution (SKA?)

Now: large field of view, large collecting area, modest angular
resolution (compact arrays, single dishes).

Chang, Pen, Peterson and McDonald , 2008, hmﬂm&mglndﬁﬂl@&&ﬁlz
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Foreground Challenges

400 Mz

000043

Cosmological 21cm Signal ~ 1mK
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A way out?
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A
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Mode mixing

frequency
A

High frequency
A

-

Instrumental

/ beam

Low frequgngy Nt )Q >
[l —> observed intensity
A angular direction = sum in angular direction
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!
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Cross correlation detection

o Cross-correlation with of GBT data with DEEP2 Galaxy
survey by Chang et al.(2010) - avoids foreground problem!

e Updated using WiggleZ survey (Masui et al. 2012)

Cross power spectrum
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Intensity Mapping at
Green Bank
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The Future?

o Work at GBT will continue with the aim of measuring the
21cm autocorrelation.

o However, observations like this are slow. To survey the
whole sky to this depth ~ 20 years

» Is there a better way to do this?
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Interferometers
Ao = 27 - dij /A

advancing
'/ wave crests

Visibility is instantaneous

C

correlation of 2 antennas A

‘/:U i <F’FJ*> 4A o 43
F.

bascline

Fi

. . J
Each pair measures a Fourier

mode of the sky
Written explicitly:

fi A; (7 1) A (B t)e2mia-uiE (OT(R)
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Data rate

e For full N2 correlation
» ~5GB/s
» ~400 TB/day
» ~140 PB/year

o Need a way to significantly compress the data!
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Not so fast! Calibration

Each feed has an unknown, time-variable, complex gain,
from amplifier and cable behaviour

Must correct for this, or the baselines will average
incoherently

e This process is calibration, and must be done in real-time
» Nearly optimal solution via eigenvalue decomposition
» Use injected calibration signal

» Sky signal pulsars

Newburgh + CHIME, arXiv:1406.2267
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Interferometers
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Transit Interferometers

e Timeseries is periodic on the sidereal day t o

» Apply this restriction and see how the analysis goes.

(0) = j i Bi; (53 $)T(B) + 1:5(6)

Spherical Harmonic
Transform

vii(¢) = 3 B, ($)aim +n7(6)

Ilm

Fourier Transform

2 — )
V J E Blmalm + Ny
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Transit Interferometers

e Timeseries is periodic on the sidereal day t o

» Apply this restriction and see how the analysis goes.

Vig(#) = [0 By )T(R) +n55(9

Spherical Harmonic
Transform

VU (b) Z Blm C”l'm - ’n’ij ((D)

Ilm

Fourier Transform
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m-mode transform

e Mapping does not mix m’s (each is independent)
V&= Biaim + 1@
!

Write in vector form
v=Ba+n.

Simple, linear mapping from the information on the sky, to
the measured degrees of freedom

Discrete relation, with finite number of degrees, can apply
a1l the standard statistical, signal processing techniques.

Computationally efficient: For 1000 m’s an O(N?) matrix
operation becomes 106 times faster
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Interferometric Imaging

o Traditional imaging is based around the 2D Fourier
Transform approximation to the interferometry equation
(only valid on small patches instantaneously)

e Use a series of steps to relax this approximation and
increase field of view (w-projection, mosaicking, A-
projection)

» eg. w-term. From non coplanarity of array and sky. Solve by
iteratively deconvolving the effects

= ] Sy A2 (o) erai
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m-mode Imaging

e For our restricted domain (transit telescopes), we can solve
the problem exactly.
Measurement is linear mapping:

v=Ba+n.

How do we make an image of the sky? Use standard tools of
signal processing:
» Pseudo-inverse to solve and regularize (Maximum likelihood)
» Wiener Filter (Bayesian expectation)

e Conceptually straightforward. Deals naturally with all full
sky effects, polarisation etc.
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Foreground Removal

e Spectral smoothness allows separation of 21cm

4
4
4

Measure components and model (Liu, Dillon etc.)
Power spectrum removal (Foreground wedge)

Delay-space filtering (Parsons et al. 2012)

e Most methods have difficulties:

4

Mode mixing of angular and frequency fluctuations by frequency-
dependent beams (esp. interferometers)

Robustness Biasing introduced if foreground model poorly
understood (esp. non-gaussianities)

Statistical Optimality Need to keep track of transformations on
statistics, for optimal PS estimation

Polarisation leakage mixes fluctuations from polarised foreground
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Karhunen-Loeve Transform

Old CMB idea - E/B mode separation (Bunn et al. 2003)

An ‘optimal’ treatment - m-modes makes it feasible.

Construct the covariances of the signal and foregrounds
in the measured basis

S=(ss')=B (a%al )BT BESB <afa}> BT

e Jointly diagonalise both (eigenvalue problem)

Sx = \Fx

e Gives a new, uncorrelated basis. Corresponding
eigenvalue gives the expected signal to foreground

power ratio.
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Foreground Removal with KLT

e Foreground removal is performed by projecting out
modes with low signal-to-foreground ratio.

Robustness to model uncertainties by choosing a
conservatively large threshold; we would prefer to
increase our errors bars in order to remove bias.

Addresses the previous problems

Analysis uses all measured data to avoid mode mixing.

Can be made arbitrarily robust - increase threshold for
removal
Linear transformation in the data space, keeps track of

statistics
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Foreground Cleaning

Unpolarised Foreground Polarised Foreground (Q) 21cm Signal
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Foreground Cleaning

Unpolarised Foreground Polarised Foreground (Q) 21cm Signal
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Foreground Cleaning

Unpolarised Foreground Polarised Foreground (Q) 21cm Signal
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2D Power spectrum Estimation

A Fractional power
Full FGJ ()} ™ spectrum errors (blueis
better)

Subtraction works
well into
foreground wedge
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Summary

Data Science is becoming an increasingly large and distinct
part of physics

21cm Intensity Mapping is a promising technique for
mapping the Universe and measuring BAOs.

Data volume and foregrounds are challenging

New techniques, like the m-mode formalism show promise

for surmounting them
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