Title: Data Science in Radio Cosmology Date: Mar 24, 2016 11:00 AM URL: http://pirsa.org/16030130 Abstract: In recent decades probing for the subtle indications of new physics in
experimental data has become increasingly difficult. The datasets have gotten
dbr> much bigger, the experiments more complex, and the signals ever smaller. Success
stories, like LIGO and Kepler, require a sophisticated combination of statistics
and computation, coupled with an appreciation of both the experimental realities
dbr> and the theoretical framework governing the data.
dbr> In this talk I will look broadly at data science in physics, and how and why it
bras taken an increasingly central role. I'll highlight specifically my current
draw area of research, radio cosmology: discussing why it is one of the most
challenging areas for data science, and describing my work developing optimal
draw and efficient statistical methods for turning terabytes of timestreams into
draw cosmology. Pirsa: 16030130 Page 1/50 Pirsa: 16030130 Page 2/50 #### Data Science - Combination of: - Statistics - Signal processing - Machine learning - ▶ High performance computing - Physics (theory and experiment) CHRIS ANDERSON MAGAZINE D6.23.08 12:00 PM # THE END OF THEORY: THE DATA DELUGE MAKES THE SCIENTIFIC METHOD OBSOLETE ## Data Science in Science - For Science - Model fitting - Model selection - Tools: - ▶ The fashionable stuff - ▶ Machine learning (classification, regression...) Pirsa: 16030130 Page 6/50 Pirsa: 16030130 Page 7/50 ## Why now? - Huge increase in accumulation of data - Volume and complexity means it is becoming a specialised just to do anything with it. #### LHC - Need to identify which collisions are interesting - Each collision is described by many tens of parameters - Machine classification problem (Boosted Decision Trees) - Trained on simulated data - Selects between events of interest and background events - Used in real-time in software triggers (LHCb) - Used for event selection for Higgs detection (CMS) Gligorov 2014, CMS Collaboration 2012 #### LIGO event detection - Real-time matched filter - Effectively search against 250k template waveforms - Look for peaks in likelihood ratio, keep those that exceed some false positive rate - Keep only events coincident within 15ms in both detectors (~light travel time) Abbott et al. 2016 Pirsa: 16030130 Page 10/50 ## Data lifecycle - During acquisition - ▶ Real-time phase - Post-acquisition - Basic results - Processing to likelihood function - Science - Parameter estimation - Synthesis with other data Pirsa: 16030130 Page 11/50 Pirsa: 16030130 Page 12/50 # Probing Dark Energy - Acceleration 'explained' by dark energy (cosmological constant, quintessence ...) - Expansion is governed by Friedmann equation $$H(z)^2 \approx \Omega_m (1+z)^3 + \Omega_{DE} \exp\left[\int_0^z (1+w(z)) \frac{dz}{1+z}\right]$$ • Fundamental physics is contained within the equation of state $w(\rho) = p/\rho < -1/3$ # Probing Dark Energy Construct likelihood function for dataset i.e. Pr(supernovae|expansion) Use Markov-Chain Monte-Carlo to infer distribution of relevant parameters ## Baryon Acoustic Oscillations #### CMB angular power spectrum - Sounds waves propagating in the early Universe. Leave acoustic peaks in the CMB - Weaker imprint left in the matter distribution - Gives a standard (statistical) ruler $$r_s = \int_0^{\tau_*} c_s d au \sim 100 \, h^{-1} \, \mathrm{Mpc}$$ Known from CMB Pirsa: 16030130 Page 16/50 ## Cosmological 21cm - 21cm line is the transition between parallel and antiparallel spins of neutral Hydrogen - The ratio between the two occupancies determines the spin temperature T_S $$n_1/n_0 = (g_1/g_0) \exp(-T_*/T_S)$$ We can observe the contrast relative to the CMB $$\Delta T = 23.8 \left(\frac{1+z}{10}\right)^{1/2} \left[1 - \bar{x}(1+\delta_x)\right] (1+\delta_b) (1-\delta_v) \left[\frac{T_S - T_\gamma}{T_S}\right] \text{ mK}$$ Pirsa: 16030130 Page 19/50 # 21cm Intensity Mapping - In 21cm the frequency gives the redshift. - Observe the diffuse emission from many unresolved galaxies - Changes the game in telescope design: - Previously: large field of view, large collecting area, large angular resolution (SKA?) - Now: large field of view, large collecting area, modest angular resolution (compact arrays, single dishes). Chang, Pen, Peterson and McDonald , 2008, http://arxiv.org/pdf/0709.3672 Pirsa: 16030130 Page 21/50 Pirsa: 16030130 Page 22/50 Pirsa: 16030130 Page 23/50 Pirsa: 16030130 Page 24/50 ## Cross correlation detection - Cross-correlation with of GBT data with DEEP2 Galaxy survey by Chang et al.(2010) - avoids foreground problem! - Updated using WiggleZ survey (Masui et al. 2012) Pirsa: 16030130 Page 26/50 #### The Future? - Work at GBT will continue with the aim of measuring the 21cm *autocorrelation*. - However, observations like this are slow. To survey the whole sky to this depth ~ 20 years - ▶ Is there a better way to do this? Pirsa: 16030130 Page 28/50 ### Interferometers Visibility is instantaneous correlation of 2 antennas $$V_{ij} = \left\langle F_i F_j^* \right\rangle$$ - Each pair measures a Fourier mode of the sky - Written explicitly: $$V_{ij}(t) = \frac{1}{\Omega_{ij}} \int d^2 \hat{\mathbf{n}} A_i(\hat{\mathbf{n}}; t) A_j^*(\hat{\mathbf{n}}; t) e^{2\pi i \hat{\mathbf{n}} \cdot \mathbf{u}_{ij}(t)} T(\hat{\mathbf{n}})$$ Pirsa: 16030130 Page 32/50 ## Not so fast! Calibration - Each feed has an unknown, time-variable, complex gain, from amplifier and cable behaviour - Must correct for this, or the baselines will average incoherently - This process is calibration, and must be done in real-time - Nearly optimal solution via eigenvalue decomposition - Use injected calibration signal - Sky signal pulsars Newburgh + CHIME, arXiv:1406.2267 Pirsa: 16030130 Page 35/50 #### Transit Interferometers - ullet Timeseries is periodic on the sidereal day $t o \phi$ - Apply this restriction and see how the analysis goes. $$V_{ij}(\phi) = \int d^2 \hat{\mathbf{n}} \, B_{ij}(\hat{\mathbf{n}}; \phi) T(\hat{\mathbf{n}}) + n_{ij}(\phi)$$ $$Spherical \, Harmonic$$ $$Transform$$ $$V^{ij}(\phi) = \sum_{lm} B^{ij}_{lm}(\phi) a^T_{lm} + n^{ij}(\phi)$$ $$Fourier \, Transform$$ $$V^{ij}_m = \sum_{l} B^{ij}_{lm} a^T_{lm} + n^{ij}_m$$ #### Transit Interferometers - ullet Timeseries is periodic on the sidereal day $t o \phi$ - Apply this restriction and see how the analysis goes. $$V_{ij}(\phi) = \int d^2\hat{\mathbf{n}} \, B_{ij}(\hat{\mathbf{n}};\phi) T(\hat{\mathbf{n}}) + n_{ij}(\phi)$$ $$Spherical \, Harmonic \\ Transform$$ $$V^{ij}(\phi) = \sum_{lm} B^{ij}_{lm}(\phi) a^T_{lm} + n^{ij}(\phi)$$ $$Fourier \, Transform$$ $$V^{ij}_m = \sum_{l} B^{ij}_{lm} a^T_{lm} + n^{ij}_m$$ #### m-mode transform Mapping does not mix m's (each is independent) $$V_{m}^{\alpha} = \sum_{l} B_{lm}^{\alpha} a_{lm}^{T} + n_{m}^{\alpha}$$ Write in vector form $$\mathbf{v} = B \, \mathbf{a} + \mathbf{n} \; .$$ - Simple, linear mapping from the information on the sky, to the measured degrees of freedom - Discrete relation, with finite number of degrees, can apply all the standard statistical, signal processing techniques. - Computationally efficient: For 1000 m's an O(N³) matrix operation becomes 106 times faster # Interferometric Imaging - Traditional imaging is based around the 2D Fourier Transform approximation to the interferometry equation (only valid on small patches instantaneously) - Use a series of steps to relax this approximation and increase field of view (w-projection, mosaicking, Aprojection) - eg. w-term. From non coplanarity of array and sky. Solve by iteratively deconvolving the effects $$V = \int dx dy A^{2}(x, y) e^{2\pi i (ux + vy + w\sqrt{1 - x^{2} - y^{2}})} I(x, y)$$ ## m-mode Imaging - For our restricted domain (transit telescopes), we can solve the problem exactly. - Measurement is linear mapping: $$v = Ba + n$$. - How do we make an image of the sky? Use standard tools of signal processing: - ▶ Pseudo-inverse to solve and regularize (Maximum likelihood) - Wiener Filter (Bayesian expectation) - Conceptually straightforward. Deals naturally with all full sky effects, polarisation etc. # Foreground Removal - Spectral smoothness allows separation of 21cm - Measure components and model (Liu, Dillon etc.) - Power spectrum removal (Foreground wedge) - Delay-space filtering (Parsons et al. 2012) - Most methods have difficulties: - Mode mixing of angular and frequency fluctuations by frequencydependent beams (esp. interferometers) - Robustness Biasing introduced if foreground model poorly understood (esp. non-gaussianities) - Statistical Optimality Need to keep track of transformations on statistics, for optimal PS estimation - Polarisation leakage mixes fluctuations from polarised foreground ### Karhunen-Loeve Transform - Old CMB idea E/B mode separation (Bunn et al. 2003) - An 'optimal' treatment m-modes makes it feasible. - Construct the covariances of the signal and foregrounds in the measured basis $$\mathbf{S} = \left\langle \mathbf{s} \mathbf{s}^{\dagger} \right\rangle = \mathbf{B} \left\langle \mathbf{a}_{s}^{*} \mathbf{a}_{s}^{T} \right\rangle \mathbf{B}^{\dagger}$$ $\mathbf{F} = \mathbf{B} \left\langle \mathbf{a}_{f} \mathbf{a}_{f}^{\dagger} \right\rangle \mathbf{B}^{\dagger}$ Jointly diagonalise both (eigenvalue problem) $$Sx = \lambda Fx$$ Gives a new, uncorrelated basis. Corresponding eigenvalue gives the expected signal to foreground power ratio. Pirsa: 16030130 Page 44/50 # Foreground Removal with KLT - Foreground removal is performed by projecting out modes with low signal-to-foreground ratio. - Robustness to model uncertainties by choosing a conservatively large threshold; we would prefer to increase our errors bars in order to remove bias. - Addresses the previous problems - Analysis uses all measured data to avoid mode mixing. - Can be made arbitrarily robust increase threshold for removal - Linear transformation in the data space, keeps track of statistics Pirsa: 16030130 Page 46/50 Pirsa: 16030130 Page 48/50 Pirsa: 16030130 Page 49/50 ### Summary - Data Science is becoming an increasingly large and distinct part of physics - 21cm Intensity Mapping is a promising technique for mapping the Universe and measuring BAOs. - Data volume and foregrounds are challenging - New techniques, like the m-mode formalism show promise for surmounting them