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Abstract: <p>The fact that the Einstein-Hilbert action, by itself, does not lead to a well-posed variational principle has become textbook knowledge.
It can be made well-posed by the addition of suitable boundary terms. There are many boundary terms available in the literature, of which the most
famous and most widely used is the Gibbons-Hawking-York (GHY) boundary term. The GHY term is ostensibly defined only for a non-null
boundary. There have been very few efforts in the literature to extend its definition to null boundaries. The speaker will present his group's work
towards finding a boundary term to render the Einstein-Hilbert action well-posed in the presence of null boundaries. He shall discuss a proposed
boundary term, associated boundary conditions, outstanding issues and possible applications.</p>
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Quantizing Gravity

The Ecovomi Tises
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Quantum and Gravity
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Constructing an Action for GR

Firstly, it's elegant. In fact, it's not just elegant: it's completely gorgeous...
Secondly, it's more powerful...

Finally, and most importantly, it is universal...

and reveals a deep relationship between classical mechanics and quantum

mechanics. This is the real reason why it's so important.
—Daniel Baumann, on the least action principle
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Constructing an Action for General Relativity

*I«. Assumption:
Dynamical variable for gravitational field = the metric.

I« First attempt: a Lagrangian density made up of the metric
and its first derivatives.

*I«. The action should respect the symmetries of the theory
= Lagrangian density a scalar density.

I« Only such scalar density: A\/—g, where A is a constant.

I« Extreme Machian theory! No Schwarzschild solution.
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Lanczos-Lovelock Lagrangians

I« Principle of equivalence+General covariance+Second order field equations=-
Lanczos-Lovelock Lagrangians

I D=4=- Einstein-Hilbert (with A) + Gauss-Bonnet

I« Gauss-Bonnet term is generally thrown away- since total divergence and
does not contribute to equations of motion [Yale, Padmanabhan (2011)]
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Einstein-Hilbert Action and Its Variation

Y« The Einstein-Hilbert action is varied with the metric and its deriva-
tives as variables:

/ d*x 6(v/—gR) = — / d*x /—gG¥*5g.— d3*x nivh [gab($N§b]
JVY JV

J OV

I Here, NS, = —T<, + % (a‘grgd + o5rd,

Y Since [, contains both metric and its derivatives, the boundary
variation contains variations of both the metric and its derivatives.
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History of Boundary Terms in Gravity

*I+ But not a covariant prescription- Gamma-Gamma Lagrangian not a scalar, zero in local inertial
frame

I« ADM Formalism (1959-1962) introduced the decomposition:

V—8gR = V—glapm — V—gLcuy, Lapm = PR+ KapK?P — K2KE;
Lany = 2V (Kn' +a') .

I« York (1972) took this decomposition- showed that the last term is effectively the inte-
gral of —2v/hK on the boundary. Does not mention removing this term.

I« But there is a paper, Gowdy (1970), cited by York. Has the —2v/hK separated out and
the statement, "Indeed, these end-point terms must be dropped in order to obtain Einstein’'s field
equations from variations which hold only the initial and final hypersurface three-geometries fixed."
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History of Boundary Terms in Gravity

*I« Gibbons and Hawking (1977)- "In order to obtain an action which depends
only on the first derivatives of the metric, as is required by the path-integral
approach,” and "so that for metrics g which satisfy the Einstein equations

the action | is an extremum under variations of the metric which vanish on
the boundary...but which may have non-zero normal derivatives.”, add to the
Einstein-Hilbert action the term

AGHY = 2 / dBX\/ZK,
J oV

plus a term depending only on the induced metric on the boundary (can be
used to render the action finite in asymptotically flat spacetimes.)

I« Myers (1987)- showed that the total action then is precisely the Eu-
ler character for a 2-dimensional manifold with a boundary.
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Two Ways of Dealing with Dynamics

v+ Solution of a differential equation that is equation of motion:

For free particle, solve ¢ = 0 with g and g specified at initial
time.

Y+ Solution of a Variational Problem:

2
Extremise the action S = f:l g2 with boundary conditions. Boundary

term is
[g5alt
which is put to zero by fixing g(tl) and g(t2).
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Total Derivatives Change the Variational Problem

I« Consider adding a total derivative term —(1/2)9¢(pqg) to the
Lagrangian. For free particle, this term becomes —(1/2)9: (qq)

*I«. The boundary term in the variation now becomes
1 . o . .at2
5 [gdg — ad4],

I« g, g to be fixed at both boundaries= Four boundary conditions for
a second order equation of motion!

*I“*. Unless chosen with special care, conflict with equations of
motion is assured! Variational problem not well-posed!
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Padmanabhan- Gravitation

i) The first problem is that, for arbitrary values of g and ¢ at both t = t; and t = t3,
we may not have a classical solution satisfying the boundary conditions.

ii) Further, one would like the action principle to obey the composition rule
of the following kind. We expect A(1 — 2 — 3) = A(1 — 2) + A(2 — 3), where
the paths connecting (qgi1.t1) and (g3.t3) are decomposed at an intermediate time
to with t1 << to < t3. The paths are expected to be continuous at t = t> but need

not be smooth at t = t2. This requires leaving g at t = t2 arbitrary in the action
principle.

iii) Finally, the action principle has its roots in quantum theory and freezing
q and g simultaneously will require specifying the values of both coordinate and
momentum at a given time, which is inappropriate in the quantum theory.
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Hawking's Argument for Path Integrals

I« Argument by Hawking- in an Einstein Centenary Survey (1979)

N/

2.9 Timelike
tube

hlv¢|
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Hawking's Argument for Path Integrals

I« Argument by Hawking- in an Einstein Centenary Survey (1979)

—

S
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Hawking's Argument for Path Integrals

I+ Hawking’'s argument hinges on the assumption that the paths which
are continuous in the metric but discontinuous in the first derivatives
of the metric are to be included in the path integral.

Y« But why not only consider those paths which are continuous
in first derivatives too?

I« Or, to go the other way, why even demand continuity in the
metric?
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Feynman and Hibbs

*I+ The argument makes use of the formula:

<(—xk+l_ X")2> = e ®

As ¢ — 0, transition element of square of velocity diverges. Typical paths do not
have a definite slope.
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Feynman and Hibbs

*I+ The argument makes use of the formula:

<(—X"“(— X")2> = e ®

As ¢ — 0, transition element of square of velocity diverges. Typical paths do not
have a definite slope.

*I* The formula can also be rewritten as

(aicrs = x0%) = == (1)

As ¢ — 0, transition element of displacement goes to zero. Typical paths are
continuous.

*I+ These conclusions essentially follow from the equations of motion. So,
should be valid even for Einstein-Hilbert action, which is a higher derivative action
but with normal second derivative equations of motion. (In general, for higher
derivative actions, typical paths are continuous in velocity [Simon (1990)].)
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s
What is this Null Surface?

I« Normal one-form ¢, = V,¢. To normalize, divide by /g?b¢,(} to
get n, such that nyn? = +1.

& — constant

33 of 70

Pirsa: 16030127 Page 21/47



Grappling with Null Surfaces

4 (Fl, = (P3¢ = 0 means ¢ does not change along (7 = (7 lies on
the & = constant null surface!

I Projection of tensors onto the surface, etc., which we gener-

ally do using normalized normal, can be done for a null surface too.
By using an auxiliary null vector k9 such that k9(, = —1.
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Two Ways of Specifying a Null Surface

¥4 There are two ways of specifying a null surface.

M g?V.,0Ve6 = 0. In a coordinate system with ¢ as one of
the coordinates, this corresponds to g”® = 1/N? = 0 or N — co.

¥4 The second way: Let h be the determinant of the 3-metric

on the surface. The surface becomes a null surface when h goes to
zero.
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B
Two Ways of Specifying a Null Surface

I« There are two ways of specifying a null surface.

gtV L, oV = 0. In a coordinate system with ¢ as one of
the coordinates, this corresponds to g = 1/N? = 0 or N — 0.

Y The second way: Let h be the determinant of the 3-metric
on the surface. The surface becomes a null surface when h goes to
zero.

* Both methods are connected by the relation /—g = N~ h.
If we take /—g to be finite and non-zero, both relations are
equivalent.
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Two Ways of Specifying a Null Surface

¥4 But one can easily think of cases where this equivalence is broken.

¥4 For example, consider the static metric
ds® = — N?dt*+dn*+oagdx?dx® [Medved, Martin, Visser (2004))

A t =constant surface where N — oo will be a null surface by our first
criterion. But our second criterion is not satisfied since h # 0. This
happens because \/—g = 0 on that surface.
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Importance of Null Surfaces

It has generally been customary, in relativity theory, to work largely
in terms of spacelike hypersurfaces and timelike directions...| wish to
stress another point of view: that null hypersurfaces and null directions
are, in fact, much more convenient and may perhaps also be regarded
as more fundamental...For the two fields most important to relativity
theory, namely, electromagnetism and gravitation... propagate in null
directions and along null hypersurfaces...also a strong mathematical
reason for considering null directions... This is essentially that the
(two component) spinor calculus is more elementary than the tensor
calculus... This fact that all the direct large-scale observations of the
universe that have been made lie on what is essentially a null cone,
has also been emphasized by J. L. Synge and others.

—Roger Penrose
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Previous Attempts

I+ Barth (1983)- PhD Thesis- done in the framework of a particular
form of the metric
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A Direct Limit?

'« GHY Term- VvVhK: Vh goes to zero, K diverges on null limit- but
maybe the combination has a null limit?

I Note: The counterpart of hyp = gap — €nsnp on a null surface-
Gab = Lab + L2k + kol p- cannot be obtained as a limit.
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How to (re)discover the GHY Term?

I Suppose we did not have the ADM decomposition and GHY had
not given us the boundary term. How can you discover it?

I Look at the boundary variation of the Einstein-Hilbert action.

OAHY = /d3x hn, (gaba‘r;b — ng(frgb) = /d3x OLHy

I« Our purpose- Find some B such that 0B added to above
eliminates terms with variations of normal derivatives.
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How to (re)discover the GHY Term?

I« First observation:

Loy = Vh {Va(dnj_) — §(2Van?) + Vanp 5gob Sn3 = Sn+gPsny

I« Separate out the normal derivatives from the surface deriva-

tives:

Va(dnl) = D, (6n7)—en;a;dg?; D,Ap = hThiN mAn  a; = n'Vn;

5¢
SCay = \/F{Da (6n) — 5(2Van?) + (Vanp — enja;) ogt L,
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Analyzing the Boundary Variation

I« Consider a 4-dimensional manifold.

vI“* Take a 3-dimensional manifold in the 4-dimensional manifold
as our boundary. We shall be considering the Einstein-Hilbert action
on one side of this boundary
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Analyzing the Boundary Variation

I« Consider a 4-dimensional manifold.

vI“* Take a 3-dimensional manifold in the 4-dimensional manifold
as our boundary. We shall be considering the Einstein-Hilbert action
on one side of this boundary

* We need to specify the position of this boundary somehow.
Simplest method: Introduce a scalar field ¢ such that ¢ = ¢o
corresponds to the position of the boundary.

Y When we consider variations of the metric, we shall not vary
¢@. Note that if we define s. = V. = 9., we will have ds. = 0.
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Analyzing the Boundary Variation

I« |t is easiest to think of in terms of the coordinates (¢,x1,x2,x3) for some
(x1, x2, x3).

I« In these coordinates, the total derivative in the variation of the Einstein-

Hilbert Lagrangian can then be converted to a boundary term, which is the integral
over the boundary of

OLyHY = \/—gSc (gabél'gb — ngf$rgb) . Se =V .
I« By algebraic manipulations, we can convert the boundary term into

SLov = V/—8Vcl[duf,y] — 26(vV/—8Vas?) + V—8(Vasb — 8abVes)5g7 ;
5“55) = §s€ + ng5Sb .
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Constructing a Projector

I More explicitly, l_labl_lbc = [19_, and hence a projector.

C!
L M7, AP = (0, A + 7 A?).

I« Of course, given a coordinate system, you might want to choose
t* = 0. But note that this is a coordinate-dependent statement. That

is, it depends on the choice of (x1.x?. x3), since we are demanding

Ax2

a
t° 5
P | x1 x2 x3
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Invariant Volume Element on the Surface

I How to give a coordinate-invariant definition of the volume el-

ement \/—gs,, written in coordinates (¢, x!, x%, x?) on the boundary?

“ For a non-null surface, /—g = N+Vh, where N is the lapse

function. Hence,

V—EgSc = VANV b = Vhne .

*I“* Can we have a similar prescription without restricting to non-null?

* We have the two vectors t? and s?. (I am assuming that we
have an invertible 4-metric. So every one-form has an associated

vector and vice-versa.)
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Invariant Volume Element on the Surface

I For a non-null surface, we can choose t? < s? respecting the
condition t?s, # 0. Then, one can show that /—gs, = Vhn,.

I« For a null surface, we cannot make this choice. Even for a
non-null surface, we need not necessarily make the above choice. You
might not necessarily want to evolve along the normal direction.

I So consider the case that t? and s? are linearly independent.
Choose t? to be the basis vector along the ¢ direction, since it
is off-the-surface. Actually, since s, = V30 = (1,0.0,0) in these
coordinates, we should choose

&) -
Db '

I« Choose any two vectors e3, A = 1,2, which are orthogonal to —¢~
and s?. These lie on the boundary surface.
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Invariant Volume Element on the Surface

I« The metric in the coordinate system with (—t”.s?, e3) as basis vec-
tors is given by

2 1 0 0

o 1 s 0 0
Sk O O g11 912
O O g2 g2
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The Boundary Term

I« The off-the-surface derivatives of the metric can be eliminated by
adding the integral on the boundary of

Co = 2\/—gﬂabvasb

v« For a non-null surface, the choice t7 = —§; reduces this to the
GHY term.

Y« |In fact, t9 = —%; reduces 17, to h‘g.
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The Boundary Term for a Null Surface

= .
*I“*. For a null surface, one may choose t° = k7, the auxiliary null
vector. Also, we shall write s, as £,.

I« Then, the boundary term becomes the integral of

Cpn = 2/9(© + K),

where @ is the expansion of the null generators and ~ is the non-affinity
parameter given by the equation 2V (P = k¢P.

I« The full boundary variation has the form

oLy =aa[\/anab5€b] — 26 [\/a(@ + "7)] + \/a[eab - (@ + H’) Qab] 5qab
+ /@ [2ka (© + k) — kP (Valy + Vils)] 662
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What is to be Fixed on the Null Boundary?

4 One can see that we have to fix g€ and (? on the boundary. From
our experience from the non-null case, we would expect the surface
metric to be the one that is to be fixed on the surface.

% It is natural that g8, the 2-metric on the null surface ap-
pears.

¥ But where is (* coming from? & corresponds to dg*. These
degrees would have corresponded to N and N in the ADM variables.
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What is to be Fixed on the Null Boundary?

*I“ In order to understand this result better, consider the surface metric in the coor-
dinates with basis vectors (—k?. (9 e3). The original metric, before variation is

0O O 0
hap = O qg11 qi2
O qgi2 qg22

I« It can be proved that the variation of the surface metric is

YA YA 502
Q) h(tf3 == 501 dqi11 Oqi12
S02 12 Oq22

I« 5(? should vanish if the surface is to remain null. The component of §/? that
does not appear above is 69 k,;. This corresponds to scaling of the original null vector
on the surface and hence does not change the surface metric.
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On Non-uniqueness

I Let us now examine the uniqueness of our results.

v GHY term has the nice feature that it not only eliminates
the variations of the normal derivatives of the metric, but also allows
only variations of the surface metric to appear on the boundary.

I These features will be preserved even if we add a term of
the form Flh.z. Ovh,s] to the GHY term.
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On Non-uniqueness

I« Also, we have generally been throwing away total divergence terms
on the surface.

I Any term in the total variation term with only surface derivatives
can be converted to a total divergence term and terms with variations
of the metric by the formula

5 (ADaB) = Do (ASB) — [DaASB — JaB5 As]

Pirsa: 16030127 Page 43/47



On Non-uniqueness

1 /g (© + r)- © has only surface derivatives. May not contribute
on smooth boundaries. All the normal derivatives are in ~. In our
framework, if we choose the level surfaces of ¢ to be null, then ~
vanishes. No boundary term??
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Conclusions

I“*. We have provided a decomposition of the boundary variation of EH action on a
null boundary:

O L oy :()a[\/aﬂaba‘(’b] — 20 [\/a(@ -+ h‘.)] -+ \/E[G)ab — (@ -+ h‘.) QQb] (Sqab
+ /T [2ka (© + 1) — kP (Valp + Vila)| 562
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" Theoretical physics is fun. Most of us indulge in it for the same reason
a painter paints or a dancer dances — the process itself is so enjoyable!
Occasionally, there are additional benefits like fame and glory and even
practical uses; but most good theoretical physicists will agree that
these are not the primary reasons why they are doing it. The fun in
figuring out the solutions to Nature's brain teasers is a reward in itself.”
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" Theoretical physics is fun. Most of us indulge in it for the same reason
a painter paints or a dancer dances — the process itself is so enjoyable!
Occasionally, there are additional benefits like fame and glory and even
practical uses; but most good theoretical physicists will agree that
these are not the primary reasons why they are doing it. The fun in
figuring out the solutions to Nature's brain teasers is a reward in itself.”

- Padmanabhan, In preface to "Sleeping Beauties in Theoretical
Physics.”
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