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Abstract: <p>In thistalk | discuss the effects of nonlinear backreaction of small scale density inhomogeneities in general relativistic cosmology. It
has been proposed that in an inhomogeneous universe, nonlinear terms in the Einstein equation could, if properly averaged and taken into account,
affect the large scale Friedmannian evolution of the universe. In particular, it was hoped that these terms might mimic a cosmological constant and
eliminate the need for dark energy. After reviewing some of these approaches, and some of their flaws, | will describe a perturbative framework
(developed with R. Wald) designed to properly take into account these effects. In our framework, we assume that the spacetime metric is
"close"---within 1 part in 10"4, except near strong field objects---to a background metric of FLRW symmetry, but we do not assume that the
background metric satisfies the Friedmann equation. We also do not require that spacetime derivatives of the metric be close to derivatives of the
background metric. This alows for significant deviations in geodesics, and very large curvature inhomogeneities. A priori, this framework also
allows for significant backreaction, which would take the form of new effective matter sources in the Friedmann equation. Nevertheless, we prove
that if the matter stress-energy tensor satisfies the weak energy condition, then large matter inhomogeneities on small scales cannot produce
significant backreaction effects on large scales, and in particular cannot account for dark energy. As | will aso review here, with a suitable
&€ dictionary,2€™ Newtonian cosmologies provide excellent approximations to cosmological solutions to EinsteinEYss equation (with dust and a
cosmological constant) on all scales. Our results thereby provide strong justification for the mathematical consistency and validity of the LCDM
model within the context of general relativistic cosmology. While our rigorous framework makes use of 1-parameter families and weak limits, in
thistalk | will provide a simple heuristic discussion that places emphasis on the manner in which "averaging” is done, and the fact that one is solving
the Einstein equation.</p>
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Historical introduction

* In cosmology, the universe is
homogeneous and isotropic at large
scales. Perturbations behave linearly.

e At small scales, density fluctuations are
large, [9p/po| = 1, and nonlinear dynamics
important (e.g., bound systems).

¢ |ssue: Because of nonlinear terms,
computing the Einstein tensor of a
metric, and averaging, do not commute,
SO

Gap ((9)) # (Gaplg)) = (87T o)
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Historical introduction

e Large scale metric satisfies an Einstein equation with new effective stress-
energy tensor

\

“Backreaction” arises from averages of
small scale nonlinear terms

e |dea revived after discovery of accelerated expansion: What if ¢',’ Cqly ?
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Historical introduction

* Arguments against significant backreaction

Can the acceleration of our universe be explained by
the effects of inhomogeneities?
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Abstract

No, it is simply not plausible that cosmic acceleration could arise within the
context of general relativity from a back-reaction effect of inhomogeneities in
our universe, without the presence of a cosmological constant or ‘dark energy’.
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Motivation

* Observation 1: While density inhomogeneities are large at small scales, metric
inhomogeneities are small, except near strong field objects (BHs, NSs).

“Fitting problem” for the matter

“Fitting problem” for the metric

A

Density

distance
Sh
|M:.Q).D,T,.. ) llmuﬂhmg
A map
i M
' dlltal:fl
L] map
Density
' dultu:'.:-c
- . . 2
e Intuition: Poisson equation V~¢ P
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Motivation

e Observation 2: Even with small metric perturbations, significant backreaction
is possible if derivatives are large.

E.g., vacuum universe filled with gravitational waves.  Jab = 94, + Yab

FLRW symmetry /

Asin(x/1)
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Motivation

e Observation 2: Even with small metric perturbations, significant backreaction
is possible if derivatives are large.

E.g., vacuum universe filled with gravitational waves.  Jab = 9, + Yab

FLRW symmetry

e Expand Einstein equation: Asin(x/1)
0= Ga (9" +7)
G (g N+ G (6, 7)) HGE (919, 7)
/R A/l A*/I7 take AR/l ~ 1
next ordet next ord
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Motivation

* “Ordinary perturbation theory" not capable of treating scenario with small metric

perturbations, large density perturbations, small scale nonlinear dynamics, anc
potential backreaction.

* “Short wave approximation” (previous slide) capable of doscﬂbing backraacllon due
lo tensor modes (gravilnuonal waves), but what at backreac

ourced by matter inhorm What 1Drm would thm take?

* Goal: Develop an improved perturbative framework that allows a prior for significant
backreaction due to matter inhomogeneities, Use it to constrain any such effects,
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Motivation

“Ordinary perturbation theory" not capable of treating scenarlo with small metric

perturbations, large density perturbations, small scale nonlinear dynamics, anc
potential backreaction,

* “Short wave approximation” (previous slide) capable of describing backrauclion due
1o tensor modes (uruvllalionul wnvaa). but what about bac ;

ind vector modes, sourced by matter inh

10MogH ' What 10rm wouid this take?

* Goal: Develop an improved perturbative framework that allows a prior for significant
backreaction due to matter inhomogeneities, Use it to constrain any such effects,

* Main result: Within this framework, if the matter stress-energy tensor satisfies the
weak energy condition, then the effective stress-energy of backreaction must be

fraceless and satisfy the weak energy condition itself. In particular, it cannot mimic a
casmological constant.
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Heuristic derivation of our results: Assumptions

* Situation: Spacetime metric solves the Einstein equation on all scales, and
takes the form

(0
fab = 0.1, F Yok

Low curvature, | 1"l ~ 1/ Small amplitude, |7l < 1
No particular form assumed In cosmology < 0(10™") except near
In cosmology, assuma FLRW symmetry strong field objects
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Heuristic derivation of our results: Assumptions

* Matter stress-energy satisfies the weak energy condition,
Toanl(" > 0, for all timelike *
= 1. Is (essentially) homogeneous beyond some scale L <« I

lie., T=TW + AT,

“Averages” nearly 1o zero on scales compared 1o L
1 <1 /pe Inour universe, L = 100 Mpe

wli

= Averaging of tensors not generally possible except in flat spacetime. Since 4.
is locally flat in a region of size D « Rt, averaging well-defined on this scale.

For all slowly varying test tensor fields of support over region of size D = L,
require
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Heuristic derivation of our results: Average Einstein

* Step 1: Average the Einstelin equation,
G+ Mgy = 87l
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Heuristic derivation of our results: Average Einstein

e Step 1: Average the Einstein equation,

('r.ilrﬂ | ‘\_’IHI;J ’\’_‘lrflrl

Expansion in “ab

e First, re-write as | | !
A0) (0) R , - A1) (2 (34
(.r”:' T A\'(}”;l’ o7 l”:’” :\HAI,,I, A\A‘,,,f, (th (:th ('ffh
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Heuristic derivation of our results: Average Einstein

e Step 1: Average the Einstein equation,

('ufﬁ | '\_’Iuh ’\:rl,;h

e First, re-write as EfpanSIin in rim
o

0) (1) (2) (34)

(";Jh' ! ‘\.‘},.:JL H';i lp:l'f,” H”A-I:JI' \ A"f'f' (";Jhl (,‘:J'I"J ('rffr
Average
LHS unchanged
under averaging
G 4+ Mg — 8T = 8t Define average of RHS to

be effective stress-energy

e Consider each RHS term separately.
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Heuristic derivation of our results: Constrain .,

e Step 2: Prove tracelessness of effective stress-energy

* Need control on 7ab:
Would like to impose linearized Einstein equation, G4 = 87 AT, but that
would constitute a new unjustified assumption.

Instead, multiply full Einstein equation by 7ab, and average.

Obtain //4,,{,4,{,_“H(’-:!:J: :\.,'l /l/"rliuh\'l[f’vl.!:“”

e Weak energy condition implies RHS is negligible. Choose /" = [/t

Then /,/'“"_.,;a‘"a"r’A'/',J.-, //"'f\,,f,, p(0)
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Heuristic derivation of our results: Constrain .,

e Step 2: Prove tracelessness of effective stress-energy

* Need control on 7ab:
Would like to impose linearized Einstein equation, G = 87 AT, but that
would constitute a new unjustified assumption.

Instead, multiply full Einstein equation by Yab, and average.

Obtain //4,,{,4,{,_“H(’-:!:J: :\.,'l /l/"rlJJJh\'I[‘IA.!:Jh

e Weak energy condition implies RHS is negligible. Choose /" = f“/t“"

Then /,/'”"_.,;a‘"a‘LA'/;J.-, /j"'f\,,f,, N
negligible
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Heuristic derivation of our results: Constrain .,

* By the weak energy condition p >0, so

‘/ ‘/'”{";,.,m = max ‘",”, / U"""‘p ~ T1AX ‘ﬂ:”! / Uu/ Pm}
I 1\\ L[
/ ‘ [R? / /

e But any f“““’ can be approximated by linear combination of f““t“t" terms,

so, to our level of approximation, / pedab, () _ )

'.'H'J
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(0)

Heuristic derivation of our results: Constrain ¢,

* We have / TP = Lﬁ [ dtd*k K1, [1;_,;.[—' = s|5-|’-']
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(0)

Heuristic derivation of our results: Constrain ¢,,,

* We have /;n},‘,‘,‘r"r“ ﬁ [dm-"t.- K%y [l.‘«f,L.|'-' - slf.?l'-']

positive tensor part negative scalar part
(from gravitational waves) (frorm matier inhomogeneities)
SHOW THIS VANISHES

* In position space, scalar term takes the form
- 1 1 i
Ey=~— | d"20,00'¢
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One-parameter family

e Spacetime of interest exists at some fixed A, to which we attach a one-
parameter family. Since metric converges uniformly but first derivatives are

only bounded, the spatial scale of perturbations in general decreases
as A — ().

e Assumptions say nothing about the magnitude of V.V (gus(A) — gan(0)), so
it can be unbounded as A — (. Thus 7,;,(A) unbounded.

decreasing A

® O L 0. o:. o. o ::::::::::::::::
®@ 0@ ¢ %0% 0% 0% 0%

O @ [e%e% s

Ao \ T /
Lap(A)
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One-parameter family

e Assumption 4: V, (geca(A) = 9ea(0)) Vi (gep(A) = gep(0)) = fraveder weakly.

* Recall definition of weak limit: «,(A) — «a,(0) weakly iff for all compact
support test fields ¢,

[ / (v, (A) a, (0 1A%z =0
M

Y 0

e Examples of weak convergence:

Az

Hill( ) > ()
A

sin? (j\) > I)

e Taking the weak limit corresponds to averaging at small A. This assumption
thus assumes that necessary averages exist.
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Results

THEOREM: Let g,,(A) be a one-parameter family of metrics satisfying assumptions
(1) through (4). Then the background metric J.1(1) is a solution of the effective
Einstein equation,

Gab(9(0)) 4+ Agan(0) = 87 (‘/ v 4 i“flf"')

al)
' (0) .,
The effective stress energy tensor ¢ ;" is:

ab L, (0)

a. traceless, ¢""(0)¢,, =0, and

b. satisfies the weak energy condition.

¢ Results apply to our universe as long as we are sufficiently close to the limiting case in
which it applies exactly.
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Alternative approach: Buchert averaging

* Main alternative approach to averaging in the literature.

e Put the exact metric into a :
/ot

ds? dt® 4 r/,_},{/..i')t/.f"r/.r'f
~ D 3
o I ' .
e Define spatial averages of scalars: (¥)p % / \U75>
D Jp
e Averaged “scale factor” defined as ap = (Vp)'/*
e Equations for ap can be derived by averaging the of the Einstein

equation: the Hamiltonian constraint and the Raychaudhuri equation.
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Alternative approach: Buchert averaging

¢ “Modified Friedmann equations”:

e

(P 87 (p) (R) o,
) O7 -,JJ;.‘ D S ANIN)D XD
(.’]\ _) )

o D o |
) L ﬂ/ﬂ'p | (__),n
ap ' \

“backreaction” scalar:
‘)

spatial Ricci scalar

Op ((0—(0)p)*)p — (0ij0")D

)
w)

There Is also an integrability constraint:

(H(J',Q;:). - rfj, (.f!l';,'i"R_::-;a]‘ ()

e Notice that if Qp is sufficiently large an acceleration of @p can occur!
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Advantages over Buchert

1. When the deviations of the metric from exact FLRW are not small, it is not clear how to interpret averaged
quantities, such as ap,

(0)
¢ We obtain an approximation ¢_," to the true metric Jas. Measurable quantities can thus be calculated
unambiguously

2. Only the scalar parts of the Einstein equation are averaged.
Y | ] g

e Weak limits are used instead of averages in proving general theorems, thereby avoiding the difficulties

involved in averaging. Averages are well-defined since the metric perturbation is small.

3. They work in the comoving, synchronous gauge, where late-time perturbations to the metric are in general not
small.

e \We would use the longitudinal gauge in cosmology, instead of the synchronous gauge.
4. The Buchert equations are only a partial set of equations: the evolution of Qp is not determined.

¢ All components of Einstein’s equation are used (not just the scalar parts), and the Einstein equation is
imposed at each point.
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Advantages over Buchert

1. When the deviations of the metric from exact FLRW are not small, it is not clear how to interpret averaged
quantities, such as ap.

. () ] L
¢ We obtain an approximation ¢_," to the true metric Jah. Measurable quantities can thus be calculated
unambiguously

2. Only the scalar parts of the Einstein equation are averaged.

e Weak limits are used instead of averages in proving general theorems, thereby avoiding the difficulties

involved in averaging. Averages are well-defined since the metric perturbation is small.

3. They work in the comoving, synchronous gauge, where late-time perturbations to the metric are in general not
small.

e \We would use the longitudinal gauge in cosmology, instead of the synchronous gauge.
4. The Buchert equations are only a partial set of equations: the evolution of Qp is not determined.

¢ All components of Einstein’s equation are used (not just the scalar parts), and the Einstein equation is
imposed at each point.
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Generalized perturbation theory

¢ Instead of taking ordinary limits, one can assume existence of an analogous

weak limit: o .
(1) ' ‘(irfh:- \l ‘(iufjt.‘]-‘
, w-lim

A0 A

'IHI'J
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. (L)
Equation for Vas

)
e By analogy with ordinary perturbation theory, derive an equation for ‘.,‘,,, by
subtracting the background Einstein equation from the exact Einstein
equation, dividing by A, and taking a weak limit.

e Ordinary perturbation theory:

f-)l'.',m(/\) ‘ /,"”M-’\) ,' )
A A= )

A=()

lincarized Einstein equation

e Generalized perturbation theory:

S0

. Eap(A) — £, : : : " . :
w-lim generalized linearized Einstein equation
\—>() A
* Not entirely straightforward to compute, since non-linear terms in Einstein
tensor can in general have non-zero weak limit, as in background case.
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. (L)
Equation for Vas

I - ] { [ i) . cf . | Vel
VeVt = sVVers = =V Vi ~gw (VVs = VVA )
| () ed (O0yy (L) | s/ (0 (L) (L) I (L) ¢/ ¢ d « c di a . od
3”"“' R(g ) )y ‘jill"ul ')Yab, A Yoh 2 Yo, U e d . et 241
I hed | | | ) |
_,ﬂ' [ h,f’_. ,,,,,,,, :/‘u { lﬁ’ _"” ! H H by
: I | (()) f f I} f
}}',‘ 2;/ \rfm“. { I [T | bpe " 2/ , 21 o })
| | _ |
87 j...-.'] \?f,..‘, { T r I : Gl 201 J } —);r : .

l 1) [ (1 I ( ) o I 1)

2‘f’ b l;“ L’” ( l;" ! J,“ !

|”:H.I~,.| e f 9,u(1)e d S(1)ed f L)ed [l ed e f 9 D edes |
Q ab 1 { f | ‘|j
| . | (1) I | | | | (1) R

-3\\. -_,w . : ! \‘- \.\\. l el
l \' (1)ed 3 (1 l ] 1) | (1 !

3 f | ] ( ’3 1 b ’_J- ah J t1cl e

I i L (1 ed L 0) 4, e d e\ ]

R ( 2V 1/ V. "\ 5

:3 d a : ] ]‘fH l I ; ’ [} J i ]

lT (1 IY 1) T , 1) T J\\ IT , 1)

] ! (al : I , gl I , !
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Conclusions

The only effect of small scale inhomogeneities on the leading order dynamics of the
universe isviaa p _] p fluid, corresponding to gravitational radiation.

More generally, no matter what happens at small scales, /ff',’f has positive energy
properties. Implications for stability? What about alternative theories?

We have split the deviation of the metric from the background into short and long
wavelength parts. The long wavelength part, : , obeys a linear equation, as in ordinary
perturbation theory, but with additional terms arising from small scale inhomogeneities.
The short wavelength part, ', is allowed to evolve non-linearly, which is essential to
describe gravitational dynamics at small scales.

Non mentioned: This work also motivated an analysis of Newtonian cosmology. We
showed that with a suitable dictionary, Newtonian cosmologies provide excellent
approximations to Einstein solutions on all scales.
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