Title: Patchy Blazar Heating

Date: Mar 15, 2016 02:00 PM

URL: http://pirsa.org/16030101

Abstract:

Pirsa: 16030101 Page 1/30

Inpact of clustering: patchy heating

Warming-up the IGM with patchy blazar heating

Astrid Lamberts TAPIR GROUP- CALTECH

Phil Chang (UWM) - Avery Broderick (Perimeter Institute) Christoph Pfrommer (Heidelberg) -Ewald Puchwein (Cambridge)

Perimeter Institute - March, 15th, 2016

Ĭ

(ロ) (倒) (差) (差) (差) ぞく()

1/29

Pirsa: 16030101 Page 2/30

The Intergalactic medium

- ullet majority of baryons o reservoir for structure formation/evolution
- ullet Long-term thermal memory o probe of re-ionization, star formation...
- Quasi-linear evolution

2/29

Pirsa: 16030101 Page 3/30

(Brief) thermal history of the IGM

Competition between heating and cooling: re-ionization, photoheating, adiabatic cooling

 $T=T_0(
ho/ar
ho)^{\gamma-1} o ext{Major questions: } T_0,\gamma.$

Challenges

- Mainly absorption: Ly $_{\alpha}$ forest
 - mostly $1.5 \leqslant z \leqslant 3 \rightarrow$ no full history
 - sensitive to $\delta \geqslant 0$, lower δ need *HeII*
 - Uncertainties ionizing background
- Analysis: column density + Doppler width ≠ density + temperature
- Simulations are required to calibrate T and γ estimates \rightarrow physical assumptions, numerical uncertainties

4/29

Pirsa: 16030101 Page 5/30

Observational discrepancy

Recent observations of Ly $_{\alpha} \rightarrow$ apparent contradiction What is the thermal state/evolution of the intergalactic medium?

5/29

Pirsa: 16030101 Page 6/30

Motivations

- IGM structure is fundamental for understanding Large Scale Structure
- intuitive understanding
- ullet Calorimeter ightarrow measure of blazar heating, number of blazars beyon z=.5

Ŧ

Pirsa: 16030101 Page 8/30

Where?

AGN (roughly) uniformly distributed + uniform extragalactic background

- \Rightarrow blazar heating is uniform (to first order) \rightarrow volumetric
- ⇒ impacts mainly low density regions

8/29

Pirsa: 16030101

Where

Mean free path for pair creation

$$D_{pp}(E,z) = 35 \left(\frac{E}{1 \text{ TeV}}\right)^{-1} \left(\frac{1+z}{2}\right)^{-\xi} \text{ Mpc}$$

 $\xi = 0 \text{ z} < 1 \quad \xi = 3.5 \text{ z} > 1$

→ heating occurs far from sources, very different from other AGN feedback mechanisms

4□ → 4回 → 4 差 → 4 差 → りへで

When?

Limit: number of blazars

- TeV-Blazars unobservable at high z: evolution?
- At z=0 $L_{blazar} \simeq 10^{-3} L_{quasar}$
- Blazars \(\simeq \text{Quasars (accretion physics)} \)
- ightarrow Assumption : Blazars follow evolution of quasars with scaled luminosity density ightarrow low, intermediate, high blazar heating models
- ightarrow peak after $z \simeq 3$

Temperature of IGM

TeV sources \rightarrow estimate local heating rate \rightarrow add in simple model of IGM (Hui, Gnedin, 1997)

 \Rightarrow Significant heating for $z \leqslant 3$

Page 12/30

11/29

Pirsa: 16030101

Temperature-Density distribution

ightarrow inverted temperature-density relation

4 D > 4 D > 4 E > 4 E > E 900

Inpact of clustering: patchy heating

impact on IGM

Higher temperature at all z, limited impact on density distribution

13/29

Pirsa: 16030101

990

observational constraints: T_0, γ

Higher T_0 and inverted $T - \rho$ suggested by some recent results (Boera+2012, Viel+2009, Becker+2007, Bolton+2008...)

14/29

Pirsa: 16030101 Page 15/30

Impact on Ly $_{\alpha}$ statistics

no need for UV flux adjustments, better agreement for weakest absorbers, good agreement for powerspectrum

15/29

Pirsa: 16030101 Page 16/30

A more complex thermal history for the IGM

TeV blazars efficiently heat IGM

- ullet Additional heating after $z\simeq 3$
- inverted $T \rho$

ightarrow fits some data, problems with Voigt profile fitting ightarrow scatter in Tho?

Pirsa: 16030101 Page 18/30

Pirsa: 16030101 Page 19/30

Idea : $\delta_H = f(\delta_{DM})$

heating at given point →Integral on all sources

Ex static universe:

$$\begin{split} \delta_{H}(\mathbf{x}) &= \frac{\dot{Q}(\mathbf{x}) - \dot{\bar{Q}}}{\dot{\bar{Q}}} = \frac{1}{4\pi \dot{\bar{Q}} D_{pp}} \int_{\Omega} d\Omega \int_{0}^{r_{max}} dr' (\mathcal{E}(\mathbf{r}' + \mathbf{x}) - \bar{\mathcal{E}}) e^{-\tau} \\ &= \frac{1}{4\pi \dot{\bar{Q}} D_{pp}} \int_{\Omega} d\Omega \int_{0}^{r_{max}} dr' \delta_{E}(\mathbf{r}' + \mathbf{x}) \bar{\mathcal{E}} e^{-\tau} \end{split}$$

Then Fourier transform o $ilde{\delta}_H = ilde{W}_{blazar} ilde{\delta}_{DM}$

4□ > 4□ > 4 = > 4 = > = 9 < 0</p>

Inpact of clustering: patchy heating ○○○●○○○○○○○

Filtering function (Lamberts+2015, inspired by Furlanetto+2007,

Barkana+2005)

Expanding universe

$$\tilde{W}_{H}(k,z) = \frac{1}{\bar{X}} \int_{E_{min}}^{E_{max}} dE \int_{z}^{z_{max}} dz' \frac{dX(E,z,z')}{dz'} \times \frac{D(z')}{D(z)} \left((b(z) + \frac{f}{3}) j_{0}(kr) - f j_{2}(kr) \right)$$

with

$$X(E, z', z) = \frac{\mathcal{E}(E', z')e^{-\tau(z, z', E)}}{D_{pp}} \frac{c(1+z)^3}{H(z')}$$

Ŧ

- integral on blazar spectrum
- bias, redshift-space distortions, increased area
- linear growth of DM perturbations
- expansion universe
- received energy

4 D > 4 B > 4 E > 4 E > E 9 Q C

Filtering function

Naturally selects relevant length scales

- \rightarrow High quasar bias \rightarrow more power
- $\rightarrow \! Scales$ below $\simeq 10$ Mpc have little impact $_{_{\rm I}}$
- \rightarrow Large scale δ_h follow δ_{DM}

Page 22/30

Inpact of clustering: patchy heating ○○○○●○○○○○○

Implementation in Gadget

Gadget-3 (Springel+2005) SPH code, "copy" FFT used to solve Poisson equation

Alternative to subgrid model, computationally cheap $L_{box} = 100$ Mpc, 2×512^3 particles, simplified star-formation. simulations with two bias models

4 D > 4 B > 4 B > 4 B > 9 Q C

Pirsa: 16030101 Page 24/30

Inpact of clustering: patchy heating ○○○○○○●○○○○

temperature distribution

Temperature: integrated impact of blazar heating

- Larger scatter than uniform heating
- Average lower T than uniform heating (for $z \leq 1$)

24/29

Pirsa: 16030101 Page 25/30

Pirsa: 16030101 Page 26/30

Observational impact

- $\stackrel{\stackrel{
 ightharpoonup}{\bullet}}{\bullet}$ Increased scatter ightarrow fits lower envelope obtained with line profile fitting
- High T fits with curvature methods (Boera+2014)
- ullet "By eye" fits : to be confirmed with Ly $_{lpha}$ simulations

◆□▶ ◆□▶ ◆臺▶ ◆臺▶ 臺 釣<</p>

26/29

Pirsa: 16030101 Page 27/30

Inpact of clustering: patchy heating ○○○○○○○○○●○○

To come: confronting to Ly α data

Models of Ly α need higher resolution simulations: 1280³ for 100³ Mpc box.

Trace lines-of -sight trough simulation \rightarrow computed transmitted flux \rightarrow fit spectra (vpfit) \rightarrow compute statistics

Differente statistics are sensitive to different things and have different limits and caveats.

Ŧ

◆□ > ◆□ > ◆ 直 > ◆ 直 * り へ ○

To remember

Thermal history of Universe is complex

- Developed method to model fluctuations in cosmo simulations
- ullet ightarrow Blazar heating is not uniform
- Small scale fluctuations are erased, large scale remain
- Heating affected by clustering : much stronger close to high density regions
- Our model gives lower limit for scatter
- ullet Unheated sources can remain long time o maybe better fit to $extsf{Ly}_lpha$

Pirsa: 16030101

To come

Comparison with observations

- \bullet Impact on Ly_α : large scale cosmo simulation currently analyzed
- Other observational probes
 - He II forest traces lower ρ
 - 21 cm line : Canadian Hydrogen Intensity Mapping Experiment (CHIME) : large scale Hydrogen fluctuations
- Handle on blazar luminosity density