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Abstract: <p>Quantum theory can be understood as a theory of information processing in the circuit framework for operational probabilistic
theories. This approach presupposes a definite casual structure as well as a preferred time direction. But in general relativity, the causal structure of
space-time is dynamical and not predefined, which indicates that a quantum theory that could incorporate gravity requires a more general
operational paradigm. In this talk, | will describe recent progress in this direction. First, | will show how relaxing the assumption that local
operations take place in aglobal causal structure leads to a generalized framework that unifies all signaling and non-signaling quantum correlations
in space-time via an extension of the density matrix called the process matrix. This framework also contains a new kind of correlations incompatible
with any definite causal structure, which violate causal inequalities, the general theory of which | am going to present. | will then present an
extension of the process matrix framework, in which no predefined causal structure is assumed even locally. This is based on a more general,
time-neutral notion of operation, which leads to new insights into the problem of time-reversal symmetry in quantum mechanics, the meaning of
causality, and the fact that we remember the past but not the future. In the resultant generalized formulation of quantum theory, operations are
associated with regions that can be connected in networks with no directionality assumed for the connections. The theory is compatible with
timelike loops and other acausal structures.</p>
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Operational Approach

Release button

System Knob

O

Classical

O O —— () = informaiion
oul

Preparation Transformation Measurement from Hardy (2001)

Significant progress in understanding QM from an operational perspective.

Hardy (2001), Barrett (2005), Dakic and Brukner (2009), Massanes and Mulelr (2010), Chiribella, D'Ariano, and
Perinotti (2010), Hardy (2011) ....
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Operational Approach

Release button

System Knob

O

- ~ Classical
O _O_, I Q ;ﬁ information
/‘ oul
\ |
\ /

Preparation \  Transformation / Measurement from Hardy (2001)

\

A temporal order is assumed
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Correlations between experiments
INn space-time

time

space
\ .
A causal structure Is
assumed
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Questions

1. Could we understand causal structure from more primitive concepts
(e.g., signaling fromAto B = Ais in the past of B)?

2. Why does signalling always go forward in time?

3. Can we generalize quantum theory so that a causal structure is not
presumed? (Motivation: quantum gravity)

Hardy, arXiv:0509120

4. What new physical possibilities would this imply?
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Outline

« The process framework for operations with no causal order

« Atime-symmetric operational approach to quantum theory

« Quantum theory without any prior notion of time
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The process framework

Alice

No assumption of pre-existing causal order.

0. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).
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The process framework

Alice

‘Process’ —> A B A B
(catalogue of probabilities) P(o”,0"|s",s7)

a )
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Quantum processes

Local descriptions agree with quantum mechanics

Transformations = completely positive (CP) map
-0]. / _,Vll :L:(Hl) —>£(H-))
Kraus representation: § E /,F
Completeness relation: L L E cEik =1
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Quantum processes

Local descriptions agree with quantum mechanics

Transformations = completely positive (CP) maps
-0}. / _,\/rl :L:(Hl) —>£(H-))
Kraus representation: E E /,]“
Completeness relation: Z‘ L E cEik =1
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Quantum processes

A H B

.'}. i jB '.r'
f-)_(.ll '}—(“l t

MA L(HAY) — L(HA?) M5, L(HBY) — L(HE?2)

Assumption 1: The probabilities are functions of the local CP maps,

P(A("},./\(’;;. )

Local validity of QM == P(M*, M®, -} is linear in M*, MP, ..
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Choi-Jamiotkowski isomorphism

Positive semidefinite

CP maps _
matrices

M LHMY = LHY) €=—> M"Y e L(HY) Q@ LIH)

irsa: 16020112 Page 13/92



Choi-Jamiotkowski isomorphism

Positive semidefinite

CP maps _
matrices

M LHMY = LHY) €=—> M"Y e L(HY) Q@ LIH)

M" = [T & MDD

%) = > li)li)
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The process matrix

Representation

PO ME, ) = Te[wh BB (yih g yfiP @ )

J

Process matrix
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The process matrix

(A/( quIHq" '

Process matrix

Representation

) = Tr [W"“"‘f”*”—‘”' (M; A2 & MB B o

J

Similar to Born‘s rule but can describe signalling!

Page 16/92



The process matrix

Conditions on W (assuming the parties can share entanglement):

1. Non-negative probabilities: W"\l“‘ll’jll"-‘”' > ()

2. Probabilities sum up to 1:

Tr ‘_Vm_-x;B;B;--- (M""“‘“ ® MI)’,H; ® - )I ~ 1

on all CPTP maps MA142 pBiB

——> Simple characterization via the allowed terms in a Hilbert-Schmidt basis
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Example: bipartite state
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Example: channel B>A

13
J

..‘..
1)
B, i;:}
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Example: channel with memory A> B

(The most general possibility compatible with no signalling from B to A)
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Bipartite processes with causal realization

W/‘ﬁb’ — no signalling from A to B (ch. with memory from B to A)

WB#A - no signalling from B to A (ch. with memory from Ato B)
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Bipartite processes with causal realization

W/‘ﬁff — no signalling from A to B (ch. with memory from B to A)

WDB#A - no signalling from B to A (ch. with memory from A to B)

More generally, we may conceive causally separable processes
(probabilistic mixtures of fixed-order processes):

W.~ll.43/)’|/f_» — (/WH:&A + (] - (I)IVAXH
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Bipartite processes with causal realization

W/\ﬁb’ — no signalling from A to B (ch. with memory from B to A)
WBﬁA - no signalling from B to A (ch. with memory from A to B)

More generally, we may conceive causally separable processes
(probabilistic mixtures of fixed-order processes):

W.~ll.~13/)’|/f_» — (/Wlf;ﬁrl +(] . (/)IVA}{H

Are all possible W causally separable?
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Causal game

j z
f d

» Alice is given bit a and Bob bit b.

- Bob is given an additional bit b* that tells him whether he should
guess her bit (b’=1) or she should guess his bit (b’=0).

« Alice produces x and Bob y, which are their best guesses for the
value of the bit given to the other.

« The goal is to maximize the probability for correct guess:

l
Psucc = 5[P(x = blb" =0)+ P(y =alb’ = 1)]
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A non-causal process

. . 2+v2 3
Can achieve probability of success Psuce = —7 — -~ 3
rA AL Bo I l \ I3 | 5] I3
WorazBE1E2 — ] — (020! ol ltatal?)
1 \ _) - & .
two-level
systems
The operations of Alice and Bob do not occur in a
)

definite order!

More info: O. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).
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A non-causal process

. e 2‘ \‘_—2 ~ ‘;
Can achieve probability of success Psuce = —71 = ]
A1 A2B1 B | | \, B, \, By _I
H 1 A20102 _ ” — (FT ‘(T,)' b > ) )
| V2 ‘ -
two-level
systems

The operations of Alice and Bob do not occur in a
-~

definite order!

More info: O. O., F. Costa, and C. Brukner, Nat. Commun. 3, 1092 (2012).
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A non-causal process

|\

e

nol
\/
— |

Can achieve probability of success Psuce = ~—

Can such process be realized in practice?

We don'’t know.
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But it is not a priori impossible

From the outside the experiment may still agree with standard unitary
evolution in time.

time

unitary

(f transformation
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The quantum switch

Chiribella, D’Ariano, Perinotti and Valiron,
arXiv:0912.0195, PRA 2013 C

--------------------

777777777777777777777

N
The tripartite process is not causally separable! [ B )
O. Oreshkov and C. Giarmatzi, arXiv:1506.05449 A )
(also Araujo et al., NJP 17, 102001 (2015))
-
() ]
t V2
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Other causal inequalities and violations

Simplest bipartite inequalities:

Branciard, Araujo, Feix, Costa, Brukner, NJP 18, 013008 (2016)

Multiparite inequalities:
Baumeler and Wolf
- violation with perfect signaling: Proc. ISIT 2014, 526-530 (2014)

- violation by classical local operations: PRA 90, 042106 (2014)
NJP 18, 013036, 2016

Biased version of the original inequality:

Bhattacharya and Banik, arXiv:1509.02721 (2015)
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Formal theory of causality for processes
0. 0. and C. Giarmatzi, arXiv:1506.05449

A notion of causality should:

* have a universal expression (implies the multipartite case)

« allow of dynamical causal order (a given event can influence the
order of other events in its future)

« capture our intuition of causality
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Formal theory of causality for processes
0. 0. and C. Giarmatzi, arXiv:1506.05449

General process: WAB = (P(o?, 08, ...|s", 5B, ...))

Intuition: The probability for a set of events to occur outside of the
causal future of Alice and for these events to have a particular causal

configuration with Alice is independent of the choice of setting of Alice.
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Formal theory of causality for processes
0. 0. and C. Giarmatzi, arXiv:1506.05449

General process: WAB = (P(o?, 08, ...|s", 5B, ...))

A process is causal iff there exists a random partial order k(A, B,---)and
and a probability distribution P(k(A.B.---).0". 0%, --. |.s“'\. sB ..0)

such that for every party, e.g., A, and every subset X, Y, ... of the other parties,

Pk(A X, Y. ) ALX ALY, 080", 5", s8,.)
= PKA. X, Y.« )AL XA LY. .-, 0% 0", |58, ).
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Formal theory of causality for processes
0. 0. and C. Giarmatzi, arXiv:1506.05449

General process: WAB = (P(o?, 08, ...|s", 5B, ...))

A process is causal iff there exists a random partial order k(A, B,---)and
and a probability distribution P(k(A. B, ---), o, 0B, .. |.s“’x. s3.... )

such that for every party, e.g., A, and every subset X, Y, ... of the other parties,

Pk(AX.Y.- - ) ALX ALY, 0%, 0", 5", s8,.. )
= PKA.X. Y.« )AL XA LY. .-, 0%. 0" .- |58,

(background-independent understanding of causal order)
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Formal theory of causality for processes
0. 0. and C. Giarmatzi, arXiv:1506.05449

Consider rH/.\" X = (H/;f[.ib’

A= (X' XY
B = (X ... X"

If no signaling from $ to A === exists reduced process WA

rH/f(ib’ — rH/ib’L‘f( o rH/:f(

conditional process
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Formal theory of causality for processes
0. 0. and C. Giarmatzi, arXiv:1506.05449

Theorem (canonical causal decomposition):

n
I . yn 1 yi=l yi+l n i
"Wf R G Z giWX' o XTLXTL XX s

=
where

sl yi=1l yi+l . yn ] Ly oyl o oy vt i
W' X'y XX X EXY (H/(\' o XX XTXE (H/X
(iterative formulation)

Describes causal ‘unraveling’ of the events in the process.
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Formal theory of causality for processes
0. 0. and C. Giarmatzi, arXiv:1506.05449

Theorem (canonical causal decomposition):

n
I yn 1 yi=l yi+l n i
"Wf o X Z q,-‘W"\ oo X1 X L X )ﬁX‘ gi >0

=
where

sl yi=1l yi+l . yn ] Iy oyl 0 vy v Y/
(H/(.\ o XX e X AKX (H/(\' o, XL X XX o (H/X
(iterative formulation)

Causal correlations form polytopes! [For the bipartite case, see Branciard et al.,
NJP 18, 013008 (2016)]
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Causal separability
0. 0. and C. Giarmatzi, arXiv:1506.05449

A quantum process is called causally separable iff it can be written in a canonical causal
form with every reduced and conditional process being a valid quantum process.

(analogy with Bell local and separable quantum states)

> Agrees with the bipartite definition ~ Jp 412510 — g BEAL () — gyAEE
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Causal separability
0. 0. and C. Giarmatzi, arXiv:1506.05449

A quantum process is called causally separable iff it can be written in a canonical causal
form with every reduced and conditional process being a valid quantum process.

(analogy with Bell local and separable quantum states)

> Agrees with the bipartite definiton /11425152 — (/H'“” + (1 - (/)H"“H
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Causal separability
0. 0. and C. Giarmatzi, arXiv:1506.05449

A quantum process is called causally separable iff it can be written in a canonical causal
form with every reduced and conditional process being a valid quantum process.

(analogy with Bell local and separable quantum states)
> Agrees with the bipartite definition /1A Pi B — g BEAL () — gy AP

In the multipartite case, causality and causal separability are not equivalent!
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Extensive causality and causal separability
0. 0. and C. Giarmatzi, arXiv:1506.05449

Non-causality can be activated by shared entanglement!

- Define extensively causal / extensively causally separable processes

(remain causal / causally separable under extension with arbitrary input ancilla)

Simple characterization of multipartite extensively causally separable processes!
(see paper)
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What we know about the classes of quantum processes

0. O. and C. Giarmatzi, arXiv:1506.05449

bipartite quantum processes
causal

extensibly causal

causally separable

extensibly c. separable

classically controlled
quantum circuits

Pirsa: 16020112
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What we know about the classes of quantum processes
0. O. and C. Giarmatzi, arXiv:1506.05449

multipartite quantum processes

causal

causally separable

extensibly causal

extensibly
c. separable

classically
controlled
q. circuits
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This framework still assumes time locally,
and it is time-asymmetric.

What is the origin of this time asymmetry?

Could we relax the assumption of time also locally?
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The circuit framework for operational
probabilistic theories

Circuit (an acyclic composition of operations with no open wires):

I il«k}T ‘ | {PI} | Probabilistic structure
o\ —
1\. C\\l f/ D Joint probabilities
AN PG, . k1
l\ |
|\ /B p(, j, k, =0, Zjp (i j k 1)=1
{M}

Hardy, PIRSA:09060015; Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010) [arXiv 2009]
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Time-asymmetry of standard quantum theory

Causality axiom [Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011)]:

Also Pegg, PLA 349, 411 (2006), (‘weak causality’).

{E}

A p(i, j) = p(p; E)

{/)i} In quantum theory, p(p,,E ) = 'I'r(,f)flz'I )

The marginal probabilities of the preparation events are independent of the
measurement:

P(oi 1 {E} ) = p(p:)

‘No signalling from the future’
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Time-asymmetry of standard quantum theory

Causality axiom [Chiribella, D'Ariano, Perinotti, PRA 81, 062348 (2010), PRA 84, 012311 (2011)]:

Also Pegg, PLA 349, 411 (2006), (‘weak causality’).

{E}

A p(i, j) = p(p; E)

{p} In quantum theory, p(p,,.E,) = 'I'r(/f),lz'I )

The marginal probabilities of the preparation events are independent of the
measurement:

P(oi | {E}) = p(p:)

‘No signalling from the future’
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What do we call ‘operation’?
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What do we call ‘operation’?

0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

Two ideas:
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What do we call ‘operation’?

0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

Two ideas:
| L |
Idea 1. The closed-box assumption { { k}_ (P}
I !
A
, : | C /D
The events in a box are correlated with other events only 1\ \ |
as a result of information exchange through the wires ' g
A\ {N} |
'| L J
\
Wt
My
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What do we call ‘operation’?

0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

Two ideas:

Idea 1. The closed-box assumption

- An operation can be realized inside an isolated box.
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What do we call ‘operation’?

0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

Two ideas:
8 |
Idea 2. No post-selection
The ‘choice’ of operation can be known before {M} }
the operation is applied !

(Underlies the interpretation that an operation can be ‘chosen’.)
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What do we call ‘operation’?

0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

Two ideas:
8 ]
Idea 2. No post-selection
The ‘choice’ of operation can be known before {M} }
the operation is applied !

(Underlies the interpretation that an operation can be ‘chosen’.)

- The causality axiom describes a constraint on pre-selected operations
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What do we call ‘operation’?

0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

Proposal: drop the ‘no post-selection’ criterion B T

Operation =

description of the possible events in a box conditional on local information
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What do we call ‘operation’?

0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

Two ideas:
8 ]
Idea 2. No post-selection
The ‘choice’ of operation can be known before {M} }
the operation is applied !

(Underlies the interpretation that an operation can be ‘chosen’.)

The very concept of operations is time-asymmetric!
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What do we call ‘operation’?

0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

Proposal: drop the ‘no post-selection’ criterion B T

Operation =

description of the possible events in a box conditional on local information
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Time-symmetric quantum theory

0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

Joint probabilities: The basic probability rule.
{E )} ) o
... Ir(pE)) P = 2;),. Ir(p)=
T A pl.j)=——"=- where i
‘ I'r(pE) B )
{pf} L=2E; Tr(E)=d

[Also Pegg, Barnett, Jeffers, J. Mod. Opt. 49, 913 (2002).]
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Time-symmetric quantum theory

0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

Joint probabilities: The basic probability rule.
V{L.J‘} ey - s—
... Ir(pE)) P=2p,. Ir(p)=1
T A pl,J) = ———=— where i
- I'r(pE) - .
i) E= EE,. Tr(E)=d

J

[Also Pegg, Barnett, Jeffers, J. Mod. Opt. 49, 913 (2002).]
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New states and effects

States (equivalent preparation events): (p,0), where O=p=p, Tr(p)=1.

Effects (equivalent measurement events): (E.E), where O < E < E, Tr(E)=d.

Joint probabilities:

‘(E.lj)‘ ——
Pl(p.ﬁ).([:.ll“‘)l=,1,'({[_)2). Tr(pE)=0

TA Ir(pE)
‘(P-l_’) =0, Tr(pE)=0

States can be thought of as functions on effects and vice versa.
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Time reversal symmetry

{E )
Example: | VTS
A
B
- L Tr(EMY " (pt))
{M!} ey /’(I-/-/\) g —.’r}; — ,\ -B l—!\
I Tr(E"M™" " (p"))
A ‘
10}
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Time reversal symmetry

l[;' 1
Example: | YT
A
B
. ; : o Ti'(EHM" -h’( "))
M ] ) P, j.k)=— __;‘H ey [_!\
_ i _ Ir(E"M"™ 7(p7))
A
10
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Time reversal symmetry

The exact form of time-reversal is not implicit in the formalism!

T

[ > [ A
VA 4 1F )

(play the movie backwards)
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Time reversal symmetry

g 1
Example: | AT J
5|
( 1 o '[*’_(1“.\NH *.\((),H))
(N} | -Gk O
. l Ir(FF N (o))
A
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Time reversal symmetry

The exact form of time-reversal is not implicit in the formalism!

T

[ > [ AR
VA 4 1F )

(play the movie backwards)
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Time reversal symmetry

The exact form of time-reversal is not implicit in the formalism!

T

{1\ >
WO s

'
[ ™
e

(play the movie backwards)

f 1
. . " g . Vl()'} IV
The time-reversed image {F,} of 1p,} is "

determined relative to preparations {0, } that

have not been time-reversed.
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Time reversal symmetry

The exact form of time-reversal is not implicit in the formalism!

T

f > [ AR
VA, 4 1F )

(play the movie backwards)

m J

The time-reversed image {F,} of 1p,} is

determined relative to preparations {0, } that

have not been time-reversed.
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Generalized Wigner’'s theorem

Important: states and effects are objects that live in different spaces.
There is no natural isomorphism between the two spaces!

We represent them by operators in the same space based on the bilinear form

(E'I\.-[)"‘) - <p.-\‘ E\) — Tl.[p.-\ Ell |

which defines an isomorphism E4 « EA .

This isomorphism has no physical meaning! It is simply based on the choice
of bilinear form, and should not be confused with time reversal!
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Generalized Wigner’'s theorem

Two types of symmetry transformation:

~

Type | - States go to states, and effects go to effects: (.§ A

S§—85? €—¢

Type Il - States go to effects, and effects go to states: (S 4 S 4 )

S—e? €—5
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Generalized Wigner’'s theorem

« Symmetries of type | are described by:

SpSt  Sps’t |
Tr(SpS™) Tr(SpS*)

-

_ _ s-1"gs-! s-1"ESs-!

Ss(pip) = (0 7) = (

SemelEzE)=(F.F)=(d ——d —).
Te(S-""ES-') Tr(S-'""ES-')
or
. _ _ Spl'st Sp' st
Sas(pip)=(00) = (= o T
[r(Sp" ST Tr(Sp"™S™)
t o toT
. = - STETS] SVE S
SeseECE)y=(F.F)=(d d )

=T ' vt =T o ’
Te(S-V"E S-Y) Tr(S-V'E S§-1)

where S is aninvertible operator, and T is a transposition is some basis.
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Generalized Wigner’'s theorem

If the evolution under time reversal is described by Schrodinger’'s equation,

positivity of energy > time reversal is an anti-unitary operation.

Thus, time reversal is in the class:

Spl'st Sp' St
T 25 vd R
Te(Sp"S7) Tr(Sp"ST)
s-VETs-t §-VTE g

TS -'E -1y Tes-1'E §-1)

S se(piP) = (F;F) = (d ),

S, (EE)=(0:7) = ( ).

Since we are generalizing quantum theory, we leave open the possibility
for non-unitary § .
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Understanding the observed asymmetry

A toy model of the universe: 0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

U U U U U
" 8 = " i - *x p " q \
U U U U U U
¥ 4 - 4 3 b b
9] U U U U
U U U U U U
% T % ¥ y, I.\ /q
U U U U U
4 k n ‘\ 1 /"
t {p}
For an observer at 7, all future circuits contain standard operations iff ..o £; = 1.

(linked to the fact that we can remember the past and not the future)
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Understanding the observed asymmetry

A toy model of the universe: 0.0. and N. Cerf, Nature Phys. 11, 853 (2015)

| {E)
U U U U U
T - - 4 - ® ) %, T 1.\
U U U V) U U
¥ T x b b
U U U U U
U U U ) U U
¥ . T . L.
U U U ) U
¥ - - Y b
4 (P}
For an observer at 7,, all future circuits contain standard operations iff .o £; = Il

(linked to the fact that we can remember the past and not the future)
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Note: it is logically possible that non-standard operations were
obtainable without post-selection

A

future £
7 N 2 N/ Y
Time ) U U - {M)
~ 7 N7 N N
U U
7 N 7N
present {p:}
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A time-neutral formalism

An isomorphism TRANSFORMATIONS EFFECTS ON PAIRS OF SYSTEMS

dependent on

time reversal A B, ——A1—B) AR, —AIB
(MM ) &> (M7 M

0.0. and N. Cerf, arXiv: 1406.3829
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A time-neutral formalism

An isomorphism TRANSFORMATIONS EFFECTS ON PAIRS OF SYSTEMS
dependent on

time reversal B —A | B>

) —;‘11—) )
MUZPME ) o (MMM

Joint probabilities:

A BV RS VAR U | TA
Al 1D pl,j kM ==} AN}, W)=
_—y ' measurement
(p':;;;;:(p ' D. TI‘[ W.\.x_n,n_r‘(‘_.fm_.(M,\,n_ ® N(} ® PH|(',U_~ @Qu; )l
{Pk} E Tr W A4:B,8:C.C;D, D, {114']"”’ ® Nf : ® P.f“ D, ® Q".\Inl )]
) | . 4 vy i.jkd A
|' Al [ B ‘process matrix’ (encodes the connections)
C B R \ Cl \ f o (DD
’ {MI} s = D) " O ) (D " ® D) (D] -:L‘Si_}|t[)'j;..::(]>|' '

0.0. and N. Cerf, arXiv: 1406.3829
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A time-neutral formalism

An isomorphism TRANSFORMATIONS EFFECTS ON PAIRS OF SYSTEMS
dependent on

time reversal —A| =B, —A B>

(Ai.-\l ’HI:A( ) PN (M.‘h/)"»: M

Joint probabilities:

. . Aol .
AT To. pli,ju kL 1{M Y (NG e W) =
| .
I [ measurement . A -
(l):} ::-.,(l) ‘D V' 7’[ H/.l AsB B,C,C-D\Ds (M,'\"h' ® J'IVI(, ) @ F:\HI( 1Ds @ Qf},}) )I
{P } E '11’_I l_lv.'l“l_-h' B,C,C,D,D, {M.\_H_- ® J‘\‘f(-.‘ ® })"".(ll‘”.' ® Q.\IHI )l
Kk ! | K /
/ B C. /
Ao [ B ‘process matrix’ (encodes the connections)
C [ 12 \ e v/ [N}
{MI} — _ (1)‘(1) LA 3( t[l:j;:::'(l) BB .>< (])':,\:j:'(])l '><|(I).(])| /

0.0. and N. Cerf, arXiv: 1406.3829
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A time-neutral formalism

Can describe circuits with cycles:

D
[ E
A
{N;} ﬁ |
—— All such circuits can be realized
B. // Cy using post-selection.
L SE—
{Mi}
Al
(Compatible with closed timelike curves) 0.0. and N. Cerf. arXiv: 1406.3829
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A time-neutral formalism

There exist circuits with cycles that can be obtained without post-selection!

A

random bit

>
X

the idea of background independence extended to random events

(provides a framework for understanding experiments realizing the quantum switch)

Pirsa: 16020112 Page 79/92



Time-symmetric process matrix formalism

Equivalently: -
Q (M )

1%
¢

external variables

B r[‘r[ W AAB H_""(MI.\I.\_- ® M :flh'_. ® . )]
Tr(W v\.-\;“.“;“‘(ﬂ M (®) M B8 ® )]

pl.j I {MM Y AM PP W)

i i

The ‘process matrix’:

WARBE o Tr(WAMBEY 2 ] Note: Any process matrix is allowed.

0.0. and N. Cerf, arXiv: 1406.3829
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Dropping the assumption of local time

Observation: The predictions are the same whether the systems are of type 1 or type 2.

Proposal: There is no a priori distinction between systems of type 1 and 2.

The concept of time should come out from properties of the dynamics!

The general picture:

. 1 {R,} Main probability rule
Q) {
QRN PGy MY NG }yrv) e 21 B 2, 90
- {V.} W, .M &N ®-)]
{L) '
—t {0} 7
wy | O by
TNy

0.0. and N. Cerf, arXiv: 1406.3829
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Time-symmetric process matrix formalism

Equivalently: -
Q (M)

1%
¢

external variables

B r[‘r[ W AAB By (MI.\I.\_- ® M :flh'_. ® . )]
[’I W*.-":“.“;"‘(M A Ay X® M”|H; X - )]

pl.j I {MM Y AM PPy W)

i i

The ‘process matrix’:

WARBE (o Tr(WABEY ] Note: Any process matrix is allowed.

0.0. and N. Cerf, arXiv: 1406.3829
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Dropping the assumption of local time

Observation: The predictions are the same whether the systems are of type 1 or type 2.

Proposal: There is no a priori distinction between systems of type 1 and 2.

The concept of time should come out from properties of the dynamics!

The general picture:

. 1 {R,} Main probability rule
{Ql} o 4
AN Pl o+ M7 HAN ) w2 BT, 0)
- {V.} mw, (M &N ®--)]
(L) '
— {0 |
oy | I ENREY
TNy T

0.0. and N. Cerf, arXiv: 1406.3829
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Limit of quantum field theory

R. Oeckl, Phys. Lett. B 575, 318 (2003), ... , Found. Phys. 43, 1206 (2013)

(the ‘general boundary’ approach with a few generalization)

Time

0.0. and N. Cerf, arXiv: 1406.3829
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Proposal: causal structure from correlations

The causal structure underlying the dynamics in the region is reflected in
correlation properties of the state on the boundary.

Time

0.0. and N. Cerf, arXiv: 1406.3829
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