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Abstract: <p>I will discuss a class of non-compact solutions to the Strominger-Hull system, the first order system of equations for preserving N=1
supersymmetry in heterotic compactifications to four dimensions. The solutions consists of the conifold and its Z2 orbifold with Abelian gauge
fields and non-zero three-form flux. The heterotic Bianchi Identity is solved in a large charge limit of the gauge fields, where it is shown that the
topological term p1(TX) can be consistently neglected. At large distances, these solutions are locally Ricci-flat. For a given flux, the family of
solutions has three real parameters, the size of the pair of two spheresin the IR and the dilaton zero mode. There exists an explicit analytic solution
for the decoupled near horizon region where for a given flux, the size of the cycles is frozen and the only parameter is the dilaton zero mode. This
near horizon region also has an exactly solvable worldsheet CFT. When one of the two cycles has vanishing size the near horizon region disappears,
but a solution on the unorbifolded resolved conifold still exists.</p>
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Overview

This talk is concerned with heterotic supergravity at O(a’), and its
four-dimensional effective supergravity. In particular, we will discuss on-shell
solutions on the conifold. We cover:
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Overview

This talk is concerned with heterotic supergravity at O(a’), and its
four-dimensional effective supergravity. In particular, we will discuss on-shell
solutions on the conifold. We cover:

W Brief introduction to heterotic supergravity.

BPS equations and Bianchi Identity.

Analytic near horizon (NH) solution on Z--orbifolded conifold.

Numerical asymptotically Ricci flat solution.
Solution on unorbifolded resolved conifold.
Discussion of gauge charges, and five-brane charge.

Conclusions and outlook..

Heterotic Supergravity and Moduli -3

Pirsa: 16020111 Page 4/62



General String Compactifications

. Heterotic supergravity is ten-dimensional. It is standard to postulate a
Genen 81y - "compactification”:

Compactifications

Mo = My x X,

where M is assumed Minkowski, and X is the "internal space”. For compact
geometries at O(a’") one requires X to be Kahler and hence Calabi-Yau
[Strominger 86]. Special case of Maldacena-Nunez no go theorem.
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General String Compactifications

. Heterotic supergravity is ten-dimensional. It is standard to postulate a
Qe 81y - "compactification”:

Compactifications

Mo = My x X,

where M is assumed Minkowski, and X is the "internal space”. For compact
geometries at O(a’") one requires X to be Kahler and hence Calabi-Yau
[Strominger 86]. Special case of Maldacena-Nunez no go theorem.

Deformations d X => give rise to low-energy moduli fields. Not observed and so
must be lifted (moduli problem).

Type lI: RR-fluxes available. Used to stabilize moduli.

Heterotic: Only NS-flux H. Worse still: Supersymmetry = H = i(0 — 0)w =
torsional geometries!
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General String Compactifications

. Heterotic supergravity is ten-dimensional. It is standard to postulate a
Genen 819 - "compactification”:

Compactifications

Mo = My x X,

where M is assumed Minkowski, and X is the "internal space”. For compact
geometries at O(a’") one requires X to be Kahler and hence Calabi-Yau
[Strominger 86]. Special case of Maldacena-Nunez no go theorem.

Deformations § X => give rise to low-energy moduli fields. Not observed and so
must be lifted (moduli problem).

Type lI: RR-fluxes available. Used to stabilize moduli.

Heterotic: Only NS-flux H. Worse still: Supersymmetry = H = i(8 — 0)w =
torsional geometries! Can use torsion and higher order o-effects (anomaly) to
stabilize (lift) moduli.

Non-compact "local” geometries = flux and torsion even at O(a’o). This talk:
Local geometry (the conifold) + addition of o'-effects through the non-trivial
heterotic Bianchi identity.

Heterotic Supergravity and Moduli - 4

Pirsa: 16020111 Page 7/62



Why Heterotic?

The low energy theory of the heterotic string is a 10d N = 1 supergravity
coupled to Eg x Eg or SO(32) Yang-Mills.

Why Heterotic?

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus
and consider o -effects (anomaly, etc).
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Why Heterotic?

The low energy theory of the heterotic string is a 10d N = 1 supergravity
coupled to Eg x Eg or SO(32) Yang-Mills.

Why Heterotic?

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus
and consider o -effects (anomaly, etc).

Complications:

W torsional geometries not well understood, but some progress [Strominger 86,
Becker et al 2003, Ilvanov 2009, ..].

m Complicated expressions to deal with, e.g. non-trivial Bianchi Identity.

m Very few non-trivial examples. Compact examples: [Dasgupta et al 99, Yau et
al 06, ..]. Non-compact: [Israel et al 09, Dasgupta et al 13, Fei 15, etc, This
talk!].
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Why Heterotic?

The low energy theory of the heterotic string is a 10d N = 1 supergravity
coupled to Eg x Eg or SO(32) Yang-Mills.

Why Heterotic?

Good for phenomenology, but hard to stabilize moduli. Need to leave CY-locus
and consider o -effects (anomaly, etc).

Complications:

W torsional geometries not well understood, but some progress [Strominger 86,
Becker et al 2003, Ivanov 2009, ..].

m Complicated expressions to deal with, e.g. non-trivial Bianchi Identity.

m Very few non-trivial examples. Compact examples: [Dasgupta et al 99, Yau et
al 06, ..]. Non-compact: [Israel et al 09, Dasgupta et al 13, Fei 15, etc, This
talk!).

A better understanding of compact and non-compact torsional heterotic
compactifications is required.
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Action, BPS conditions and Bianchi Identity

The bosonic heterotic action reads [Regshhoeff-de Roo 89]
, a L.ooit : ‘
S = e % [*'RA— 4|dg|* — §|H|'2 +a (r|F[* —tr|R°)| ,
Mo

Acton, BPS condbons and |
Bianchi Identity H

where R is the Einstein-Hilbert term, ¢ is the dilaton, H is the N S-flux and F'is
the curvature of the gauge-connection. R is the curvature of some tangent
bundle connection V.
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Action, BPS conditions and Bianchi Identity

The bosonic heterotic action reads [Regshhoeff-de Roo 89]
; s 1. . : ‘
S = e % [*'R+ 4|dg|* — §|H|2 +a' (r|F[* —tr|R°)| ,
Mo

Acton, BPS condbons and |
Bianchi Identity '

where R is the Einstein-Hilbert term, ¢ is the dilaton, H is the N S-flux and F'is
the curvature of the gauge-connection. R is the curvature of some tangent
bundle connection V.

BPS conditions:

V,.e=Vge— éHmaw“be:O

1
VQ”C— §H€=0
FnY"" €= RppY""€=0.

Bianchi identity:
dH =o' (r F? — tr R®) + &(sources) .

We work in a large charge limit, which means that we can consistently drop the
topological tr R? term.
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Compactification and SU (3)-structures

A non-vanishing globally defined spinor € on the internal space X gives rise to
an SU(3)-structure:

JAQ=0, ~JAJAJ=+l=—'QAQ,
3! 8

-t remasthan where §) is a complex locally decomposable three-form, and J is the hermitian
. two-form.

e o idod ok
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Compactification and SU (3)-structures

A non-vanishing globally defined spinor € on the internal space X gives rise to
an SU(3)-structure:

JAQ=0, ~JAJAJ=+1=—'QAQ,
3! 8

APS condil

-y where §) is a complex locally decomposable three-form, and J is the hermitian
. two-form.

o o kdod ok
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Compactification and SU (3)-structures

A non-vanishing globally defined spinor € on the internal space X gives rise to
an SU(3)-structure:

JAQ=0, ~JAJAJ=+l=—'QAQ,
3! 8

-4 rreensibon where () is a complex locally decomposable three-form, and J is the hermitian
. two-form.

On this space, the BPS equations take the form [Strominger, Hull 86]

d (c"2¢’9) =0, d (c"%JAJ) =0, H=xe**d (e' 2¢'J) .

o o kdod ok

The first condition implies that X is a complex manifold. The second condition is
known as the conformally balanced condition.
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Compactification and SU (3)-structures

A non-vanishing globally defined spinor € on the internal space X gives rise to
an SU(3)-structure:

Acton, BPE b O

JAQ=0, ~JAJAJ=+l=—'QAQ,
3! 8

??'-kf;f:;"ﬂ where §) is a complex locally decomposable three-form, and J is the hermitian
. two-form.

On this space, the BPS equations take the form [Strominger, Hull 86]

a(e20) =0, a(e#IAI) =0, H=sea(c 7).

i o kdod wiok

The first condition implies that X is a complex manifold. The second condition is
known as the conformally balanced condition.The BPS conditions for the bundles
are:

FAQ=RAQ=0, J.F=JJR=0.

The first condition says that the bundles are holomorphic, while the second
condition is referred to as the Yang-Mills condition, often referred to as the slope
stability condition even in the non-compact case.
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Orbifokded Conifold

Solution on Z,-orbifolded Conifold
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The Internal Space

: We consider the six-dimensional non-compact "internal” geometries as cones
¥bided Conoid - over the coset space T'("'!), The five-dimensional space 7'(7%) is given by the
The Intermnal Space .
coset

TP = SU(2) x SU(2)/U(1),
where the coprime integers {p, q} describe the embedding of U(1) in Spin(4).
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The Internal Space

We consider the six-dimensional non-compact "internal” geometries as cones
over the coset space 7'("'!). The five-dimensional space 779 is given by the
coset

The Inlernal Space

TP = SU(2) x SU(2)/U(1),
where the coprime integers {p, g} describe the embedding of U(1) in Spin(4).

To be more precise, recall that SU(2) x SU(2) can locally be expressed as

SU(2)x SU(2) = (CP' x CP") x [U(1) x U(1)] ,

where U (1) x U(1) is the diagonal of SU(2) x SU(2). To get T"%) one
factors out by the U (1) which sends z € U (1) todiag(2?,z 7,z 9, 29) inside
U(1l) x U(1).
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The Internal Space

We consider the six-dimensional non-compact "internal” geometries as cones
over the coset space 7'("'!). The five-dimensional space 779 is given by the
coset

The Inlermal Space

TP = SU(2) x SU(2)/U(1),
where the coprime integers {p, g} describe the embedding of U(1) in Spin(4).

To be more precise, recall that SU(2) x SU(2) can locally be expressed as

SU(2)x SU(2) = (CP' x CP") x [U(1) x U(1)] ,

where U (1) x U(1) is the diagonal of SU(2) x SU(2). To get T"%) one
factors out by the U (1) which sends z € U (1) todiag(2?,z 7,z 9, 29) inside
U(1l) x U(1).

We will focus on cones over 7(1:1) | In fact, the BPS equations will only allow this
choice of integers for our frame choice.

Heterotic Supergravity and Moduli -9
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The Metric Ansatz

The metric ansatz as a cone over 7'("'1) reads

5  3H dr? o [Hy + H Hy—~Hy , o .. 2H .
ad =2 [ Gr oy T Gr oy 4 L]

The Metric Ansalz

where all functions are functions of the radial coordiante r. The function A will
later be fixed in terms of H 7, fixing reparametrization of r.
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The Metric Ansatz

The metric ansatz as a cone over 7'("'1) reads
3H dr? H, + Hy H, — H,
2 f2 r? [ 1 (a,2+a§)+ 4

where all functions are functions of the radial coordiante r. The function H will
later be fixed in terms of H 7, fixing reparametrization of r.

, . 2 .
@2 +62)+ LMol

ds? =
0 6

The Metric Ansalz

Here {0, 6, } are the left-invariant one-forms on SU(2) x SU(2) satisfying

dO',' = ie,-jkaj /\O'k y dO'i = ﬁeijkaj /\O’k ’

and 7 = 03 + 3, giving the Lie algebra or tangent space of SU (2) x SU(2).
The coset space 7'(!'!) is constructed by SU(2) x SU(2) reduced by the
diagonal U (1) generated by 8 = o3 — 3.
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duchon

o Kod

The Metric Ansalz

The Metric Ansatz

The metric ansatz as a cone over 7'("'1) reads
3Hdr? ,[H\+H2 , o o . Hi—H;

where all functions are functions of the radial coordiante r. The function A will
later be fixed in terms of H 7, fixing reparametrization of r.

, . 2 .
(é-f+c‘r;f)+Jr n?|,

ds2 =
¢ 6

Here {0, 6, } are the left-invariant one-forms on SU(2) x SU(2) satisfying

dO',' = ie,-jkaj Aok, d&, = ﬁe,-jk&j Aé’k ’
and 7 = 02 + 3, giving the Lie algebra or tangent space of SU (2) x SU(2).
The coset space 7'(!'!) is constructed by SU(2) x SU(2) reduced by the
diagonal U (1) generated by 8 = o3 — 63.

The complex frame ansatz is:

[3H (ar [H, + Hy [Hy, = H

Ey v T (T) R —‘I.T"\,' P (e +109) . Eg —:v'\; P (9 4 189)

3
NM=E AEaANEg, J=— Y E,AE;.

' i=1

Heterotic Supergravity and Moduli - 10
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Flux and Bundle Ansatz

We further have the ansatze for the flux and field-strengths
H=a (hin A (S2) — Q2) + ha n A (21 + Q2))

he Metrc Ansal . 1
Flux and Bundio Ansatz F= T4 (% — Q2 —d[g17]) p—dlg2n]q]-H,

Q) = —doyg = —01 Aoy, Sy = —do3 = -0, N\0>.
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Flux and Bundie Ansatz

Flux and Bundle Ansatz

We further have the ansatze for the flux and field-strengths
H=a (hin A (S2) — Q2) + ha n A (21 +Q2))

F=— (% - 9 —olgin) p—dl2mla] - H,

where
Q) = —doy = —0y Aoy, Sy = —do3 = -0, N\03.

We focus on Abelian bundles, where p and q are vectors embedded in the
Cartan {H} of either so(32) or eg x eg. Crutially, we require
p-q=0.
The charges p and q will be assumed large, that is
Tr(p-H)? =2p°>>1, Tr(q-H)?=2¢°>>1.

The large charges also provide a natural small dimensionless expansion
parameter.

It can be checked that the topological charge p,(7°X ) in the Bianchi identity can
be consistently dropped to leading order in the (1/q)-expansion. Intuitively, we
get metric parameters of O(pz, q2). while R = dw for some connection

one-form w ~ g~ ldg = O(1).
Heterotic Supergravity and Moduli - 11
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Summary of Equations

Plugging the ansatz into the BPS equations with radial parametrization

. p r
HZ(Hf"Hé)/Hh pP= ;

gives three equations for four unsolved functions {¢, f, H, Hz}:
2 1 _6 8
g [02923'1 ] pf?2  p

Summary of Equations
pf? p
4p3H,
4 r

(P o) H,

2 2 29”22 2yt 2 2 2.2
—2a“pf T'f'ﬂ H; =3[p (_1+gl)+q g2]

Heterotic Supergravity and Moduli - 12
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Summary of Equations

Plugging the ansatz into the BPS equations with radial parametrization
H=(H} - H})/H\, p="

gives three equations for four unsolved functions {¢, f, H,, H2}:
f2 ]' 6 8
I =— -
o [azpsz 1 pf?  p
4\ 4p3H,
P'q) = H,

Summary of Equations

o . [(2pHZ . . " -

—2a? pf? (—?{ 2 +plﬂi) =3 [p* (-1 +97) + ¢%43] .
1

The functions {g1, g2, h1, h2, @} are given by

2
=90 = o2 (H? ~H3), g1 = “3‘;{

2 f2
_a pf (’021{2)’ , a’hg — =

a'h; =
12

where {a, g., ¢o} are constants.

Heterotic Supergravity and Moduli - 12
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Exact Near-Horizon Solution

In the chosen radial coordinate, we find an analytic non-Ricci-flat solution to the
BPS equations

. ‘ g 1
”‘=g' 7 a2p =3(1_ 0228)
a’p 1 (1 —-g&)p*p

' ' : 401 _ -2
Exact Near-Horizon Solution * o . ( 1 gc.' )
. - ’

Heterotic Supergravity and Moduli - 13
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Exact Near-Horizon Solution

In the chosen radial coordinate, we find an analytic non-Ricci-flat solution to the
BPS equations

2 2 2
p gep 2 3 q 1 )
Hy = — , Ho = —— = 1 —
'Tazp? TP a2p? =4 ( (1 —g2)p? p®

ct e Horzon Scution 1 1 -
Exact Noar-Hortzon Solution : 91 =gc, g2= — » 62(¢ $0) — ( y 49:) )
" Hor - p adp

The parameter a can be viewed as a blow-up parameter for a S? x S? in the
conifold base. By an appropriate rescaling of r and ¢, we can absorb {a, qz}:

ds2=2a'1’2(1—93) dR? +R_2 af+a%+&?+&§+1 1L n?
# R2 1- 15 8 \1-g 1+g9. 2 RS ’

leaving three independent parameters p?, ¢, g.. At large R, f? — 3/4 # 1,
and the solution is never Ricci-flat.
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Exact Near-Horizon Solution

Exact Near-Horizon Solution

In the chosen radial coordinate, we find an analytic non-Ricci-flat solution to the
BPS equations

H=L, Hy= 9 f2=3(1 < 1)
a’p’ a?p?’ 1 (1 —g2)p? p*
62(¢ $0) — (l _g() .

The parameter a can be viewed as a blow-up parameter for a S? x S? in the
conifold base. By an appropriate rescaling of r and ¢, we can absorb {a, qz}:

d82=2a’p2(1—gg) dR? +R_2 af+a%+&?+&§+1 1L n?
? R2 1- 15 8 \1-g 1+g9. 2 RS '

leaving three independent parameters p?, ¢y, g.. At large R, f? — 3/4 # 1,
and the solution is never Ricci-flat.

At constant R, the transverse space is T'(":!) /Z,, where the orbifolding is
needed to have a regular solution at the bolt R = 1, where

Mg~ R? x §? x §2.

Moreover, the dilaton is finite at the bolt.
Heterotic Supergravity and Moduli - 13
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Singular Solution

Sending the blow-up parameter a — () we obtain a singular solution:

p p ; . 1 1 p 1
dsfi = 2a'p3(1 - gﬁ) {dlog(r)" 4 [ (t:rl2 + aﬁ) +

P -} (14 ge)2 — (1 — g)%) p-H

Singular Solution

' 2
H=22-(1-g2)n A + Q)

b-do _ APV g2
- - 2 -
T

This can also be viewed as the UV limit of the NH-solution. The metric is still
regular, but factorises to a "linear dilaton” radial direction times a non-Einstein
compact 7'(11). Backgrounds with such asymptotics have been studied by
[Aharony et al 98] in the context of holography. The dilaton is divergent for r — 0.
As there is no bolt, the orbifolding is no longer required for regularity.

Heterotic Supergravity and Moduli - 14
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Singular Solution

Singular Solution

Sending the blow-up parameter a — () we obtain a singular solution:

, p . p 1 1 . . 1 p . 1 .
dsé = 2a'p3(1 - gf) {d log(r)" + [ (af 4 a-ﬁ) + (c’rf' + 6;‘;) + n"']}
8 1 b g(* ] + g(' 2

F= -} (14 ge)2 — (1 - g)%) p-H

t 2
H = “5‘-(1 —92)n A (S +92)

b0 _ APV g2
- - 2 -
T

This can also be viewed as the UV limit of the NH-solution. The metric is still
regular, but factorises to a "linear dilaton” radial direction times a non-Einstein
compact 7'(11). Backgrounds with such asymptotics have been studied by
[Aharony et al 98] in the context of holography. The dilaton is divergent for r — 0.
As there is no bolt, the orbifolding is no longer required for regularity.

We will later discuss a branch of solutions on the resolved conifold which exhibit
the same feature. These solutions have no NH region.

It should also be mentioned that the analytic NH-solution, incuding this singular
limit, has a world-sheet description in terms of a solvable (0, 2)-CFT.
Heterotic Supergravity and Moduli - 14
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Interpolating Nomerical Solution

We have found numerical solutions which interpolate between the NH solution for
small 7 and the Ricci-flat conifold [Candelas et al 90]:

b o kdod foid

Inerpolating Nomorical

sw:m Hl—)constant1 HZ_PO) f'l_)l.
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Interpolating Nomerical Solution

We have found numerical solutions which interpolate between the NH solution for
small 7 and the Ricci-flat conifold [Candelas et al 90]:

Inerpolating Nomoical

Swion H, — constant, Hy =0, f*—1.

For a given g.., the solution space is two-dimensional, parameterized by the
values of H; (IR values) at the bolt h; o. We plot f(p) for some choices of
parameters:

Hp)

—— (10°, 0}~ Near Horizon o8| e (10%,0)- Noar Horizon
(1.001°10°,0) o (2*10°,0)

— (1.01°10°,0) ¢ ——— (2°10%,0.95°10%)
(210°, 0) 08| 2°10°,1°10°)

4 S 3 ‘ N e
104 10 1 10 100 1000 ot 0

Figure 1: f(p) with g. = 0, vanishing H» at bolt (left) and non-vanishing H>
(right). Note that introducing a non-zero hs o washes away NH-solution.
Heterotic Supergravity and Moduli - 16
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Interpolating Nomerical Solution

Interpolating Nomo ical . }
Solution (M15 [naes M3 |si)= - N Horon | 17y 5 |ws. Pz 0 nss b= Near Horzon
: ' (1.000% * Ay g | Pz g I0ed) 2" hy g |ni Ppg [se)

(1.01* My o e, P20 Ina) . (2" Do s, 399° Py se)

(1.2 By g I P olsed) @ hag a4 hyolra)

Wt

100 100 L) L IR ' 10¢ 1000

Figure 2: The metric function f(p) with g. = % with varying h1 o (left) and varying h2 ¢ (right).

i

(M40 | nass P2 0 | net)= - Near Horizon (M 0 Ineia P2 0 [nei ) - Noit Horizon
(1.0001 * Ay g I P20 Inne) | 2Py g i ag )

(101 * My | e, M2 Inas) (2" Pap Inei, 245" by )
(1.2° Ay g lww. Pzo ) | 2°hagln 25° hyolwn)

1000

Figure 3: The metric function f(p) with g- = % with varying h; o (left) and varying ha ¢ (right).
Not the appearence of the dip for larger g.. As g. approaches 1 this dip moves to the left and ultimately
pinches off the NH region.

Heterotic Supergravity and Moduli - 17

Pirsa: 16020111 Page 35/62



Solution on Resolved Conifold

We have also found a set of solutions at the boundary of the parameter space
ge =17, a—- 0%,

morpa - Afull three-sphere of 7'(11) shrinks at = 0, which is the familiar resolved
SAN S Mok . conifold, but with a non-Kahler metric due to the non-trivial flux. These
Resoived . geometries need not be orbifolded for regularity.
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Solution on Resolved Conifold

We have also found a set of solutions at the boundary of the parameter space
ge = 17,a - 0%,

o - Afull three-sphere of 7'(11) shrinks at = 0, which is the familiar resolved
R £a mckens . conifold, but with a non-Kahler metric due to the non-trivial flux. These
Resoived  geometries need not be orbifolded for regularity.

The IR expansion reads

2 2

p : p
H, =,T2+h2_1r"'+..., Hy = ’E—hz‘lr

...

2
1

e2(¢—%0) =4p2h2‘1 — 6' ...

3 .

, h2‘|1‘4
f2=3+35§“1"4+---s 91=1—**’;2-“+---, 92=01

giving a one-parameter set of solutions, parameterized by k2 1, which formally
connects to the above singular solution.
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Solution on Resoved
Conifold
R wed

Solution on Resolved Conifold

We have also found a set of solutions at the boundary of the parameter space
ge = 17,a— 0%,

A full three-sphere of 7(1:1) shrinks at r = 0, which is the familiar resolved
conifold, but with a non-Kahler metric due to the non-trivial flux. These
geometries need not be orbifolded for regularity.

The IR expansion reads

ho 174
<y gl=1__“‘2";‘!2£“+-“’ g2 =0,

giving a one-parameter set of solutions, parameterized by k2 1, which formally

connects to the above singular solution. The IR metric reads

(f - T2, R%z — 1/4’12‘1):

52
- - - T " v - -
dsg = 2h21p? [d':'!'*‘ T(&lz'*‘&zz +1?) +R§2(012+U§) +] )

where a three-sphere shrinks.
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Resolved Conifold: Numerical Results

We have found a set of numerical solution inerpolating to a Ricci-flat solution in

the UV. There is no analytic near-horizon region in IR that can be decoupled, i.e.

the solution has different IR dynamics.

Resolved Conllold:
Numerical Results

w0

Figure 4: Numerical results for the metric function f(r) and the dilaton e?®. We
have set {p? = 10°, hy; = 10}.

Note that the overall scale of €2 can be absorbed into ®; only the ratio
e?®lin [e2®luv ~ p? is physical. Note also that in the limit g. — 17, the dilaton

is no longer singular.
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Charges of Solution
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Gauge Charges

The solutions obtained from the metric and gauge ansats presented here have an
asymptotic magnetic monopole charge

1 1
vV - = F - = v H
qu o - 2p

signaling the presence of a non-normalizable mode, which does not fall off fast
enough to vanish at infinity.
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Gauge Charges

The solutions obtained from the metric and gauge ansats presented here have an
asymptotic magnetic monopole charge

1 1
VN - = F = - . H
qu or Jsa 2p

signaling the presence of a non-normalizable mode, which does not fall off fast
enough to vanish at infinity.

Further, there are IR charges associated with the compact two-cycles of the
geometry at the bolt

1 1 p 2 _ 5
Qm = oo S$F 2[—(1+9c)p—q\/1 9¢é q]-H— (sip+4q)-H
1

1 — .
a2 = - _F=—[(1—gc)p—’—’\/1—93q]- =—(s2p+4q)-H.
2 S% 2 q

Either integer or half-integer Dirac quantization conditions can be imposed:

sipet+de€Z+1/2
sope—qGe €L +1/2

s\1pe+qe €L
S2pe— Qe €EZ

ve e {0,1,..,16}, {

or V£ € {0,1,..,,16}, {

This agrees with quantization conditions obtained from the worldsheet [israel et al
09, Israel Halmagyi EES 16]- Heterotic Supergravity and Moduli - 21
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Five-Brane Charge

There is a subtlety regarding the five-brane charge as we generically have
dH # (. We define two charges, the Maxwell charge and the Page charge

1 1
= H, = H —a' CS(A)) ,
. QM =5 3 _/.M:; Qr =3 /M:s( a' CS(A))

et where C'S(A) is the Chern-Simons form
: CS(A) =t FAA.

The Page charge is required to be integer quantized [Rohm Witten 86].
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Five-Brane Charge

There is a subtlety regarding the five-brane charge as we generically have
dH # (. We define two charges, the Maxwell charge and the Page charge

1 1
= H, = H —a' CS(A)) ,
Om 2n2a’ fM;; Cr 2r2ad [, ( ¢ (4))

remamonge - where C'S(A) is the Chern-Simons form
: CS(A) =t FAA.

The Page charge is required to be integer quantized [Rohm Witten 86].

As by (T1:1)) = 1, there is a single three-cycle in the geometry, in this case

5?3 /Z,. Note however that the Maxwell charge will depend in general on the
choice of three-cycle representative, as

1
Qm,1 — Qm2 = 5 f wFAF,
2 M,

where M, is the four-chain connection the cycles.

Heterotic Supergravity and Moduli - 22

Pirsa: 16020111 Page 44/62



Five-Brane Charge

There is a subtlety regarding the five-brane charge as we generically have
dH # (. We define two charges, the Maxwell charge and the Page charge

1 1
= H, = H - a' CS(A)) ,
. QM =5 3 _/‘M:; Qr =3y /M;,( a' CS(A))

remamonge - where C'S(A) is the Chern-Simons form

harg

CS(A)=wFAA.

The Page charge is required to be integer quantized [Rohm Witten 86].

As by (T(1 '1)) = 1, there is a single three-cycle in the geometry, in this case

S?3 /7. Note however that the Maxwell charge will depend in general on the
choice of three-cycle representative, as

1
QM.] —_— QM.2 — m---éf trFAF,
2 M,

where M, is the four-chain connection the cycles.
There are two canonical representatives in the geometry, S ‘1’,2 /Z,. We get

- 1
T 2r2a/

1

— H=4(hy — h2).
2w Js3 2, (h1 — h2)

Qm,1

f H=4(hy +h3), Oay=
$3/22
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The Maxwell Charge

The Maxwell charge is also radially dependent:

The Maxwell Charge . -
: e Inse. P 0 o) - Mo orzon

Pag wrge and M / -
. / (10001 * My g | g, B35 | npe)

(1.00° Me g Inae, By Inee)

WX /
( (1.2° Mo nas. My 0 lawa)

Figure 5: The flux functions hs(p) + hi(p) with g.
horizon solution has h; = 0.
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The Maxwell Charge

The Maxwell charge is also radially dependent:

The Maxwell Charge —
Pag harge and : / = (M 0 |sess. Mz 0 | nea)- - Nomr baamgon
Five Bran . ,-"‘ (1.0001 * Ay g | age. Py | nwed

(1.00° My g s, Py | nae)

( TERC™ L™

Figure 5: The flux functions ha(p) £ hi(p) with g. = 3. Note that the near-
horizon solution has h; = 0.

Note that as 7 — o0 the charges in the UV for the locally Ricci-flat solutions differ
from that of the near horizon solution, signaling a discrete change in the UV

dynamics.
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The Page Charge and Five-Branes

The page charge is required to be quantized [Rohm Witten 86]

1
dB e Z.
2m?al /Si‘_,/z, -

This can also be confirmed from an analysis of the world-sheet CFT [Halmagyi

ha 1

Five Branos

The Page Charge and lsrael EES 1 6]
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The Page Charge and Five-Branes

The page charge is required to be quantized [Rohm Witten 86]

1
dB € Z.
2m?al /“-’.':1‘.2/12 :

T . This can also be confirmed from an analysis of the world-sheet CFT [Halmagyi
The Page Charge and lsrae| EES 1 6]

Five Branos

Recall the Bianchi Identity

dH =o't FAF + xjp ,
where j p denotes the page current. A non-zero jp signals the presence of a

five-brane, usually by the appearance of non-regularities and d-functions in the
solution.
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The Page Charge and Five-Branes

The page charge is required to be quantized [Rohm Witten 86]

1
dB e Z.
271'2(1’ '/5;-:‘{'2/22

This can also be confirmed from an analysis of the world-sheet CFT [Halmagyi

harg

Five Branos

The Page Charge and lsrael EES 1 6]

Recall the Bianchi Identity

dH =o'tr FAF + xjp ,

where j p denotes the page current. A non-zero j p signals the presence of a
five-brane, usually by the appearance of non-regularities and 4-functions in the
solution.

Our regular solutions have jp» = (0 where hy = () at the bolt. However the
solution in the blow-down limit a — 0 has a singular metric in the Einstein frame,
where h; is constant along 7. We interpret this as implying that the contribution
to the Maxwell charge in the blow-down limit comes from explicit brane source in

the IR, i.e. the RHS of the Bianchi identity has an explicit 4-function source.
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Conclusions
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Conclusions

B The heterotic string is a very nice playground for phenomenology due to the
precense of a natural gauge group.
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Conclusions

W The heterotic string is a very nice playground for phenomenology due to the
precense of a natural gauge group.

® However, the geometries arising in heterotic compactifications are more
complicated due to presence of torsion. A better understanding of these
geometries is important.
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Conclusions

W The heterotic string is a very nice playground for phenomenology due to the
precense of a natural gauge group.

However, the geometries arising in heterotic compactifications are more
complicated due to presence of torsion. A better understanding of these
geometries is important.

We have found non-compact local solutions to heterotic supergravity in the

large charge limit.
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Conclusions

The heterotic string is a very nice playground for phenomenology due to the
precense of a natural gauge group.

However, the geometries arising in heterotic compactifications are more
complicated due to presence of torsion. A better understanding of these
geometries is important.

We have found non-compact local solutions to heterotic supergravity in the
large charge limit.

We have found an exact analytical "near-horizon” solution to the system on
Rt x 711 /7, which corresponds to a solvable worldsheet CFT. We have
also found numerical solutions which interpolate between the NH-solution
and a Ricci-flat solution. These solutions have very different UV dynamics!
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Conclusions

The heterotic string is a very nice playground for phenomenology due to the
precense of a natural gauge group.

However, the geometries arising in heterotic compactifications are more
complicated due to presence of torsion. A better understanding of these
geometries is important.

We have found non-compact local solutions to heterotic supergravity in the
large charge limit.

We have found an exact analytical "near-horizon” solution to the system on
Rt x TV /Z,, which corresponds to a solvable worldsheet CFT. We have
also found numerical solutions which interpolate between the NH-solution
and a Ricci-flat solution. These solutions have very different UV dynamics!

On the boundary of parameter space, in the blow-down limit, we have also
found regular numerical solutions on the resolved conifold. These have no
near-horizon region and therefore different IR dynamics.
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Outlook

There are many generalisations, and new directions to investigate these
solutions:
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Outlook

There are many generalisations, and new directions to investigate these
solutions:

W Inclusion of nonabelian gauge fields. Any subgroup of either SO(32) or Eg x FEjx is
allowed. Useful for a better understanding of phenomenology from such heterotic local
models.
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Outlook

There are many generalisations, and new directions to investigate these
solutions:

MW Inclusion of nonabelian gauge fields. Any subgroup of either SO(32) or Eg x Ejx is
allowed. Useful for a better understanding of phenomenology from such heterotic local
models.

Move away from the large charge limit and consider a’-corrections. In particular, the
NH-solution corresponds to a exactly solvable world-sheet CFT. Including higher
corrections should hence be possible.
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Outlook

There are many generalisations, and new directions to investigate these
solutions:

W Inclusion of nonabelian gauge fields. Any subgroup of either SO(32) or Eg x Ejy is
allowed. Useful for a better understanding of phenomenology from such heterotic local
models.

Move away from the large charge limit and consider a’-corrections. In particular, the
NH-solution coresponds to a exactly solvable world-sheet CFT. Including higher
corrections should hence be possible.

The conifold provides concrete examples of holography, particularly the NH-solution
which has an asymptotically "linear dilaton backgrounds” [Aharony et al 98]. In the
heterotic case, the dual field theory should be a special kind of little string theory
[Seidberg 97]. Holography has been studied in this context before [Israel et al 09], but
it would be interesting to expand upon this analysis.
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Outlook

There are many generalisations, and new directions to investigate these
solutions:

M Inclusion of nonabelian gauge fields. Any subgroup of either SO(32) or Eg x FEjx is
allowed. Useful for a better understanding of phenomenology from such heterotic local
models.

Move away from the large charge limit and consider a’-corrections. In particular, the
NH-solution coresponds to a exactly solvable world-sheet CFT. Including higher
corrections should hence be possible.

The conifold provides concrete examples of holography, particularly the NH-solution
which has an asymptotically "linear dilaton backgrounds” [Aharony et al 98]. In the
heterotic case, the dual field theory should be a special kind of little string theory
[Seidberg 97]. Holography has been studied in this context before [Israel et al 09], but
it would be interesting to expand upon this analysis.

It would also be interesting to look for more exotic versions of the internal space,
where e.g. one or both S? have been replaced by Riemann surfaces. This probably
requires a generalisation of the fram ansatz, etc. Work in this direction is underway.
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Thank you!

Thank you for your attention!
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