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Abstract: <p>Asymptotically AdS spacetimes with reflecting boundary conditions represent a natural setting for studying superradiant instabilities
of rotating or charged black holes. In the first part of thistalk, | prove that all asymptotically AdS black holes with ergoregions in dimension d &%o¥
4 are linearly unstable to gravitational perturbations. This proof uses the canonical energy method of Hollands and Wald in a WKB limit. In the
second part of the talk, | consider a charged Reissner-Nordstrom-AdS black hole---which is superradiantly unstable to charged scalar field
perturbations at the linear level---and study the full *nonlinear* evolution of the instability. In this special case, the instability occurs even for
spherically symmetric perturbations, which simplifies the analysis and allows for the use of numerical general relativity ssmulations. Our results
show that nonlinear backreaction causes the black hole to lose charge and mass to the scalar field as the instability proceeds. Eventually, higher
scalar field harmonics become nonsuperradiant, and they are reabsorbed into the black hole. The final state is described by a &aoshairya€s black
hole, surrounded by a scalar condensate in the fundamental (lowest) mode. | discuss implications of thiswork on the original problem of the rotating
black hole superradiant instability.</p>
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Introduction to superradiant instability

= Similar process amplifies whaves: superradiance

s 17an be understood from the area theorem:

» Wave ~ """ ""“! changes BH area by

O]

® Thus, if |() < w mflyl area inc 2 requires
oM < ()
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Introduction to superradiant instability

e Similar process amplifies waves: superradiance

e Can be understood from the area theorem:
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e Wave ~ ¢ ¢ "“! changes BH area by
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e Thus, if |0 < w < mfly|, area increase requires

IM < ()
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Outline

1. Linear superradiant instability of AdS black holes with ergoregions to
gravitational perturbations

e Canonical energy method of Hollands and Wald
e Construction of unstable initial data: all such black holes unstable

2. Nonlinear evolution of superradiant instability of Reissner-Nordstrom-AdS
black holes

* Spherically symmetric numerical relativity simulations

e Backreaction on black hole, evolution of individual modes, final state
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Canonical energy method

* Standard method to prove |nstability: Search for mode solutions that grow in

* This is difficult, in particula®or complicated backgrounds, higher dimensions,
or gravitational perturbations. Requires decoupling and separation of
equations, which may not even be possible.

* Alternative s “canonical energy method”, which only requires construction of

initial data solving the constraint equations---not a solution to the evolution
equations.
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Canonical energy method

e Canonical energy & is an integral over a Cauchy hypersurface Y., quadratic in the
perturbation 7ab, satisfying

e Gauge invariance

* Degeneracy precisely on perturbations to
other stationary black holes

e Conservation

e Positive flux at horizon and
infinity

e Then &y, < &y, and if a solution to the constraints Yab exists such that
&y, () < 0, instability follows.
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Canonical energy

* Starting with Einstein-Hilbelt action, one can derive a
which depends on two metic perturbations,

where 4" ] ="' gy
depends on the background metric

» Symplectic form: Wy(g:7,,74) / n"w,

spacelike
hypersurface

* For solutions to the linearized Einstein equation, V,u" = ()
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Canonical energy

e Starting with Einstein-Hilbert action, one can derive a symplectic current,
which depends on two metric perturbations,

I
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where ¢ = g ¢!ty q9""g" g’ abged gt Cqt g

0y

depends on the'béckgrouﬁd metric.

e Symplectic form: Wx(g:v1,72) / n“w,
.-

spacelike
hypersurface

e For solutions to the linearized Einstein equation, V,w" = 0
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Canonical energy

* Integrate over a volume V. On solutions, Stokes' thearem gives

() /‘\_”u"' / i
J i\

“NOWtake -.!_'J'.‘\-L.SO m' w (= 4 1N
and consider contributions from each boundary v

f n,u" =10
Lt |

. o
/ Ny w" - / (K"°V, fljdﬂ.d.”””“ 13 I
s ir iy 1
f

nonnegative

(imposed reflecting AdS boundary, and certain gauge conditions)
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Canonical energy

¢ So define the canonical energy

(t‘[\ (, )

H.\;Ij_f,'i"- LK) /;/-'(,‘f‘-“r)

e Above implies &k (7, 22) < Ex (v, 20) (decreases in time)

e Under restriction to certain gauge conditions at .7 and .7, together with
0A = () and 6H y = 0 for all asymptotic symmetries X, it can be shown that

Ex(v,X) is gauge-invariant and degenerate precisely on perturbations to other
stationary black holes.

§

Canonical energy non-negative Canonical energy negative for
for all such perturbations some perturbation
UNSTABLE
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Canonical energy

e So define the canonical energy

(t‘[\ (~y, \"]

H'\;Ij_f,'i"- L) /’)/-'(,‘f‘-“r)

e Above implies Ex (7, 22) < Ex (v, 20) (decreases in time)

e Under restriction to certain gauge conditions at .7 and .7, together with
0A = () and 6H y = 0 for all asymptotic symmetries X, it can be shown that

Ex(v,X) is gauge-invariant and degenerate precisely on perturbations to other
stationary black holes.

.

Canonical energy non-negative Canonical energy negative for
for all such perturbations some perturbation
UNSTABLE
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Construction of initial data

e Energy (with respect to K'“) of a particle with 4-momentum p"is

:‘l\'.p.nliq']r- I\IHIJH
If there is an ergoregion where K“K, > 0 is spacelike, then a timelike or null P
may be chosen to make &k particie < 0 in the ergoregion.

e Similarly, for a wave, we ought to be able to find a gravitational perturbation
such that the canonical energy &x(vy) < 0

e Step 1: WKB method to obtain approximate compact support solution to
the constraint equations of the form ., = Au, exp(iwy) with w > |
and Ex(y) ~w K%, <0

e Step 2: Obtain exact solution with Corvino-Schoen method, such that
canonical energy remains negative.
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Construction of initial data

e Convenient to trade spacetime quantities ¢, and 7ab for initial data
quantities defined on X

(Jab = Gab + NaMy Oab =y yy

l}lf 4 [ [ ff llr! [ \ r.‘\"ﬂ (1( \;F' F'I;J \f‘
‘Hr \.;‘l/l, ke (/} k ) op Valg g q ¢ ) =L Yed
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Construction of initial data

e Assume there is a region where K" is spacelike. Construct approximate initial

data of compact support in this region.

e Trick: In this region, choose ». such that it
is tangent to K'“ (possible since spacelike).
This leads to the expression
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e Constraints q: (DD, dq,
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Construction of initial data

A

* WKB expansion of initial data iq., (\ " QM (iw) ) expliwy),

WKB parameter phase function

e Constraints become

l!)u\[l)”\](bjjh’l‘ | /)”\[‘/)h\:l(h):::'; (':”‘
P Dy 1
Depends on lower order (m<n)

WKB approximations
e Oth order, choose

lj.l‘l;ll; ()Mll;‘ (L):IHI"‘ 0. (L)Iillfl)‘\i)f’\\ ()

e Higher orders algebraic
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Conclusions from part 1

* Any black hole in AdS with § honzon Killing field that be

“omes spacelike |s
linearly unstable to superradiant gravitational perturbations. Results follow from
a Lagrangian formulation o xthe theory, so should carry over to other fields.

* Changing background alters the dynamics of the perturbation. Unst
modes may become stable,

* What is the end point of the instability? Speculation includes violation of
cosmic censorship, as there is no plausible stable final state. Numerical
simulations are important, but challenging.
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Conclusions from part 1

e Any black hole in AdS with a horizon Killing field that becomes spacelike is
linearly unstable to superradiant gravitational perturbations. Results follow from
a Lagrangian formulation of the theory, so should carry over to other fields.

e As perturbation grows, nonlinear effects become important:
e Backreaction of the perturbation on the black hole changes the background

e Changing background alters the dynamics of the perturbation. Unstable
modes may become stable.

* What is the end point of the instability? Speculation includes violation of
cosmic censorship, as there is no plausible stable final state. Numerical
simulations are important, but challenging.
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Part 2: RN-AdS superradiant instability

arXiv:1601.01384 [gr-gc], with P. Bosch and L. Lehner

¢ Reissner-Nordstrom-AdS black holes are also subject to the superradiant
instability, with charge playing the role of angular momentum.

* Charged scalar field mode ¥ ~ ¢ wt superradiantly amplified if
Wrrr - (/(2
Black. hole Black hole charge
radius

gauge coupling

compare rotating case: w < mfly

e Instability occurs even in spherical symmetry, which makes numerical
simulations feasible.
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Part 2: RN-AdS superradiant instability

arkiv:1601.01384 [gr-qc], with P. Bosch and L. Lehner

* Reissner-Nordstrom-AdS black holes are also subject to the superradiant
instability, with charge play|ng the role of angular momentum.

*“! superradiantly amplified if

Black hole charge

ge coupling

compare rotating case: w <

* Instability occurs even in spherical symmetry, h makes numerical
simulations feasible.
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Model

* Fields:  Yab metrie
Aq Maxwe

1) comple} scala

* Lagrangian: i V8 b — =P O — | D)

This gives rise to the Einstein, Maxwell
solve numerically.

* |t can be checked that RN-AdS is a solution

5
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Numerical method

e We work in Eddington-Finkelstein coordinates and spherical symmetry. Metric
and Maxwell fields can be put in the form

)

ds” .-\(a'.,")(/("“) - 2dvdr .\,‘(_('.!').”)(/Qg /A

A dx? = W(v,r)dv
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Numerical method

* Equations of motion are highly coupled

(el X)X 4

(W% gt
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Numerical method

* Integration procedure

imitial data: ¢ (v Uy, 1)

Integrate equations, radially inward in r
Impose M and Q as boundary conditions

V.and d v at v = vy
L
d Ao,
2
Ot (v
Integrate one step inv
{ ({ Vo .')
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Sample evolution

¢ \We consider small black holes in 1/2000 (1601) (6.0e+00, 1.7e-01)
AdS, so 1 < L

0.00000000e+00

e Compactly supported initial
data for ¢, small amplitude.

rH = 0.2

L=1

Q/Qmax = 0.8

q=12 (0.0e+00 , -1.5e-01)
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Apparent horizon area vs time

* Area always increases

area/area_initial

1.8

400
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Charge vs time

* Most of the charge is extracted by the scalar field

charge

~0.05!
~0.10|
~0.15!
-0.20|
~0.25!
~0.30!

-0.35/

100 200 300

/Note the fluctuations

400

time

BH charge
¢ charge outside BH

sum
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Boundary field »3(v)

d¢/dp(p=0)

1.0
0.5

time

-0.5

-1.0
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Scalar field modes

e Since the black hole is small compared to AdS scale, we can approximate the
scalar field modes by the empty AdS modes

)

2n
LL'“ — . 1l (] I ._) . 4

L
qC) L

I'H

e Instability criterion wry < g} > 2n+ 3 -

¢ Thus there can be several modes, and n=0 is most unstable.
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Scalar field modes

e Spectrogram reveals individual modes

lo¢ (A) =
g ¢ 5

200 N
* As BH loses charge and mass,

modes switch from superradiant to time 100
nonsuperradiant, and are reabsorbed.

IFE,‘(}HE.‘H(fy

e Final state is BH + lowest mode, with zero growth rate.
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What happens when g is increased?

" QL
e Larger q excites more modes -> faster process. Recall 2n + 3 < =4
I'H

I = -
" ( -
\ | — = 7.5
| i g=15
'y ¢ = 50
0.9 ' pemmmm={ = g =500
::. lll f’ -- ¢= 1500)
\": l | | = 2500
= v '
N ' !
0.8 f!
!
i
0.7- TR0 1300 3000 3% 02— —— T —
500 1000 1500 2000 2500 <0 50 100 150 200 25() 300
‘M /M

e Larger q extracts more charge
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What happens when q is increased?

* End state

01 (0,005¢

— =3
009

- q=150
q = 1500
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T
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Charge is located further away from BH

Scalar field settles dowrRartl away
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What happens when g is increased?

e End state

| g
.

Irreducible mass (area) approaches that of a
0.95 . Schwarzschild-AdS BH of mass M

0.9

>

£0.85 F

M. /M

0.8

0.75

). 1 1 10 100 1000 10000

q
* For larger q, the scalar field charge/mass ratio is increased. As the scalar field
extracts nearly the full ADM charge Q, it extracts very little mass. Final state
approaches Schwarzschild-AdS, surrounded by a distant low-mass/high-charge
condensate.
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What happens when g is increased?

. qC) L
e Larger q excites more modes -> faster process. Recall 2n + 3 < =4
I'H
I S
[ [ —
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e Larger q extracts more charge
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Conclusions

* Rotating case?

RN-AdS
nstability criterion e
(for a given w) S ey

q = fixed parameter

Most unstable mode n ()

(final state) I — )
2n+4+ 1+ 3

L

BH in ili riterion

Kerr-A

w < mily

m = any integer

Qy
(Hawking-Reall bound)
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Conclusions

* At the linear level, all AdS black holes with ergoregions are unstable.

* RN-AdS case: Numerical simulations show that charge and mass is extracted
from the black hole by several superradiant scalar field modes. As this
unfolds, higher-frequency modes cease to be superradiant, and fall back into
the black hole, resulting in nontrivial dynamics. Final state is a stable hairy
black hole, with the scalar condensate distributed far away for large q.

e Kerr-AdS case: The same arguments suggest an m — oo condensate in the
final state, since this is the most superradiant mode.

e Astrophysics: Finite-sized barrier arises from a mass term (no longer infinite)
provides a cutoff in mode energy that can be confined.
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