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Abstract: <p>For a CFT perturbed by a relevant operator, the entanglement entropy of a spherical region may be computed as a perturbative
expansion in the coupling. A similar perturbative expansion applies for excited states near the vacuum. | will describe a method due to Faulkner for
calculating these entanglement entropies, and apply it in the limit of small sphere size. The motivation for these calculations is a recent proposa by
Jacobson suggesting an equivalence between the Einstein equation and the "maximal vacuum entanglement hypothesis' for quantum gravity. This
proposal relies on a conjecture about the behavior of entanglement entropies for small spheres. The calculations presented here suggest that this
conjecture must be modified, but | will discuss how Jacobson's derivation still applies under the modified conjecture. </p>
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Geometry from Entanglement

Deep connections relating geometry <> entanglement

@ Area law for black hole entropy: Spy = ﬁA <>
area law for entanglement entropy: Spp o a=%t2A

Sorkin; Bombelli, Koul, Lee, Sorkin; Srednicki; Frolov, Novikov

@ Ryu-Takayanagi formula for holographic theories: Sy, = ﬁ]\[(z)

Ryu, Takayanagi; Hubeny, Rangamani, Takayanagi

@ Derive linearized Einstein equation in the bulk from RT

Lashkari, Mcdermott, Van Raamsdonk; Faulkner, Guica, Hartman, Myers, Van Raamsdonk; Swingle, Van Raamsdonk

@ Maximal vacuum entanglement equivalent to Einstein equation

Jacobson; Casini, Galante, Myers; Carroll, Remmen; Varadarajan; AJS
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Maximal vacuum entanglement <= Einstein Equation

The entanglement entropy of a small, geodesic ball at fixed volume is
maximal in a vacuum configuration of quantum fields coupled to gravity.

p+0op
9ab Jab t 99ab
0S5 = 0Syy + 0SIr = 0.
dSyv = ndA — area law.
0S| — EE of matter fields.
A.J. Speranza (UMD) EE in conf. pert. th. and Einstein equation February 2, 2016 4/26
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Maximal vacuum entanglement <= Einstein Equation

dSuv = oA
@ Usual area law for entanglement entropy
@ 1) is divergent, regularization dependent

@ Postulate that QG renders 7 finite and universal

o Will find n = ﬁ from MVEH
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Maximal vacuum entanglement <= Einstein Equation

OSuy = noA
@ Usual area law for entanglement entropy
@ 1) is divergent, regularization dependent

@ Postulate that QG renders 7 finite and universal

e Will find n = ﬁ from MVEH
N
Relate to curvature:
o Assume background metric is maximally symmetric, GM3> = —Ag,y,.

@ Express metric near the center of the ball in Riemann normal
coordinates.

@ Change in area, holding volume fixed is

: Qq4_oR*
0A = —————(Goo + Agoo)
d —1
A.J. Speranza (UMD) EE in conf. pert. th. and Einstein equation February 2, 2016 5/26
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Maximal vacuum entanglement <= Einstein Equation
0S|r: at first order, given by first law of entanglement entropy

ISIR = 2md(K)
and the modular Hamiltonian is defined by

p = (’_QWK/Z

For a CFT,

K= / dYC T,
P

R2 . 7.2
— L(lSZd_Q(ZI' 7'd_2 (2—1?) TOO
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Maximal vacuum entanglement <= Einstein Equation

In the CFT case,

Then requiring 65 = dSyy + dSIr = 0 gives

: 2T

Goo + Agoo = 7(5 (Too)
Impose S = 0 at all points and in all Lorentz frames, and conservation of
T,p to get Einstein equation with cosmological constant.

A.J. Speranza (UMD) - EE in conf. pert. th. and Einstein equation February 2, 2016 7/26

Pirsa: 16020011 Page 10/32



Maximal vacuum entanglement <= Einstein Equation

Non-CFT: enough if

Og_oR*

OSSR = 27 5 ((5<T00> + C'goo)
d< — 1

Then same argument gives A(xz) = C(2) 4+ Ao, and again recover Einstein
equation.

@ Requirement on C': scalar under Lorentz boosts.
@ (' could be state-dependent, operator-dependent.
e Will find that C' depends on R in some cases: discuss later in the talk.

Focus on evaluating dS|g for CFT perturbed by relevant operator.

See also Casini, Galante, Myers, arXiv:1601.00528
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EE in conformal perturbation theory

Efficient technique for calculating EE of spheres developed
by Faulkner arXiv:1412.5648.

@ Deform CFT action I = Iy + /f(:rr)(’)(:rf), operator dimension A.

o f(x)=g(x)+ ANx),
g represents a theory deformation,
A produces excited state.

e Expand entanglement entropy perturbatively,
(515‘ f— Sg + ASTA —I_ 15'92 + FS'QA + LS'A2 —|_ PP

o Look at terms that are O(A!), any order in g.
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EE in conformal perturbation theory

Path integral representation of density matrix
1 —Io—[ fO
(O-16164) = ¢ [grog, DEEI
$(X-)=¢-

=1 ~Io (1 _ [ ¢ 1 i
_Z+<$Z[ﬁ(2+)=¢+p(/” (1 /fOJr@/ fOj0 )

P(X-)=¢-

Viewed as evolution from ¥ to ¥_ with py = e 2K /7 gives operator
expression

1
dp = —po / fO + 3P0 //T {fOfO} — ... — traces
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EE in conformal perturbation theory

Perturbative expansion of entanglement entropy
S=—-"Trplogp

Logarithm involves commutators [pg, dp] from BCH. Instead use resolvent
integral,

; o0 P 1
S = 15 |'1r -
fo o [ (,wﬁ) 1+/3]
3

= Sy —|—Tl/ dp

i | . | . |
0P —0p 0P + .
[ °f po + [ f Po + I,‘"?’ f pPo + 1]

po + 3

First term 651 = 276(K), EE 15 law.
Second term 55(2) requires more work, but (surprisingly!) can be written
holographically...
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EE in conformal perturbation theory

Written as integral over AdSgy4
Rindler horizon,

553 = —or / dxee’Ts
H+

¢ satisfies Klein-Gordon equation, mass m? = A(A — d), stress tensor

1
T£ = OapOpP — Eg}ab(m?(/)? 4+ ((')(/))2)

Shown to be equivalent to RT at this order

Faulkner; Faulkner, Guica, Hartman, Myers, Van Raamsdonk
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EE in conformal perturbation theory

EbT(g is a conserved current — deform surface to £ and T

20

20 . 4 O "
o ¢ 220 fra-A _ QJA__Ld:A e Finite terms o (O)
o divergence in zg e counterterm canceling 65

stress tensor divergence
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Producing excited states
Two requirements

Q p is Hermitian:
When p defined by path integral over action I = Iy + [ fO,
requires | f(7) = f(—T)
Also implies that 9, f(0) =0, 92f(0)=0...
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Producing excited states
Two requirements

©Q p is Hermitian:
When p defined by path integral over action I = Iy + [ fO,

requires | f(7) = f(—T)

Also implies that 9, f(0) =0, 92f(0)=0...
@ Expectation values are UV finite:

At O(\), expectation value

0(0(0)) = —/dd;r/\(:zf)<O(())O(:,f)>0 _ /dd:r)\(:zgﬁfﬁ

W

Diverges like A\(0)§9=24, Subleading divergences ~ 927\ (0)§4—248+2n,
Require A(0), and first 2¢ T-derivatives vanish, with

A.J. Speranza (UMD) EE in conf. pert. th. and Einstein equation February 2, 2016 14 / 26

Pirsa: 16020011 Page 18/32



EE calculations

Bulk solutions for ¢(x)

@ ¢ satisfies a linear equation — ¢ = ¢, + ¢, theory and state
deformations.

@ Focus on small spheres — take A(7,2) = A(7) spatially constant.
o0
@ Fourier decomposition = A(T) = f dw,, cOSWT.
0

@ Bulk solution for each frequency

d a .-
Ww\A—-5 222 K. (wz d
bw = Aw (‘—) ’ o 7 ) COS WT, a=—-=—A
2 ['(A — 5) 2
z—>8
T2 A24 2 + 8,28
@ Operator expectation value
. e ‘ _2N(A-%41) (,\20—d
50) = do = (d = 28)8, = == (5) 7
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EE calculations: A > ¢

o

Bulk theory deformation ¢, = gz¢=2.

Expand ¢, near 2 = 0 and fluxes at O(A'g')

/ axeetTs
£

=Ry [)\wl?d_mu.n(wl?)zn + ﬁwbn(wl?.)%]

n=0

Impose [;° dww? )\, =0 for j < q.
— All terms subdominant to R4 as R — 0.
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~

EE calculations: A > ¢

]|

Bulk theory deformation ¢, = gz¢=2.
Expand ¢,, near 2z = 0 and fluxes at O(\!'g')

/ dx€TE: Only finite
-

term is from ¢ < zq, gives

- / Ct.(]Aﬁw
b

QaoRE[ A
21 [2A—«l‘(}6(0>]
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~

EE calculations: A > ¢

o

Bulk theory deformation ¢, = gz¢=2.
Expand ¢,, near 2z = 0 and fluxes at O(\!g!)

/ dx€TE: Only finite
-

term is from ¢ < zq, gives

- / Ct.(]Aﬁw
P

QaoRE[ A
21 [m—d”é(o)]
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EE calculations: A > 4

Still need the first law piece,

0o R

58 = or - S{Top)

Write in terms of the deformed theory stress tensor and trace,

T9 =To — 9OGab, (T9) = (A — d)g(O).

a

Final answer is

- Qg_oRE (& 1 |
0S)g = 2m—— {T50) — oA /r){'l 9) ) 4 subleading
’ — U

]
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EE calculations: A < 4

New feature: IR divergence. Consider the vev

(0(0)), = — [ dd::rg(:r)<(9(())O(:z:)>0 - f (zd:z-"igg”).

Ld—QA

Cut off g(a) at distance L, vev scales as — divergent when A < %

1
L determined by the coupling L ~ ga-d — nonperturbative.
R < L, use IR cutoff and write everything in terms of (O),.

E.g. bulk solution on &:

hg =@ 2d=A _ )y A
. 2A — d
A.J. Speranza (UMD) - EE in conf. pert. th. and Einstein equation February 2, 2016 18 / 26
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EE calculations: A < %

State deformation solution: Keep leading terms in (wlR) expansion:

A 5O
o = Ay2d A — 2R
¢ IA — d
& surface:
L . €,
38 = —2mR?A(0),6(0) ]2‘1 21A(A,d) + zo-div.
(F -—

d -2 Agd(O)
d2 —12A —d

(55"5,?) =2mR + zp-C.t.
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EE calculations: A < ¢

S

L

Final Result:
S\, = 2782 R4 VENE | d(T9) l»"“)A(O)‘A'(O).-'l(A.(Z)
M2 — 007 9A — d g

Since A < %, when R is small enough, the second term dominates over

the first.

February 2, 2016 20 / 26
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EE calculations: A = ¢

S

L

New feature: Renormalization scale.
For the vev

gca

(0(0)), = —/(Zd:zr—d = —gca

xr

I

Logarithmically divergent. Point-splitting regulator (cutoff for |7| < d) also
needs a cutoff at renormalization scale |7| > = 1. Gives

poje| ol

I'(

d

. mT2
(OVIV- = _gep———21og pud
? r(5)

Renormalized vev with IR cutoff subtracts off this divergence, giving
d

T2
(O)g" = —gea Tg)z log L
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EE calculations: A = ¢

S

L

Remainder of the calculation proceeds as before. Result:

- Qg_oR*[ o (21 R
(B,H)W = /2 )I [(3(/“}“} | (5('/ -’) ((/ 5 l/;fltl t log /.) )

ad

. <o>_qf>‘<o>]

@ /. dependence cancels between log %R.
@ Expression in terms of IR cutoff L has no ;1 ambiguity.

e R%log R term dominates as R — 0.
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Discussion

Summary of results
@ Calculated entanglement entropy in CFT perturbed by relevant O,
first order change relative to the vacuum.
@ Extended Faulkner's calculation to A < % when R < L, answer
depends on nonperturbative vev (O),.
o For A < ¢, the §(Ty,) term is subdominant as R — 0.
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Discussion: Implications for Einstein Equation

Conjectured form of d.S|R

0o R4

5Sie = O
““IR 2 —1

(6{To0) + Cgoo)

@ (' must transform as a scalar — supported by these calculations.
State is stationary on times scales ~ I, boosted state will be
characterized by same operator expectation values.

e C contains a term ~ R?2~4 (or log R), which dominates at small R
when A < %.

@ Proposal (Jacobson): Allow local curvature scale A(x) to be
R-dependent.
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Discussion: Implications for Einstein Equation

A = A(R):
When A < %, as R — 0,

A(R) = ==C ~ (52 R*2~45(0)?

Require A(R)R? < 1 to justify flat space modular Hamiltonian, neglecting

higher curvature.
1

R 1 2A—d+2
=2 — <KL | 57
(p (“’%A(’(O)Q)
Require A(R)(% > 1 to avoid strong QG effects

1

R i .
= — > ((35(0)?) 72
Wide range of R values satisfying these.
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Discussion: Future work

@ Investigate Lorentz transformations more thoroughly

Rosenhaus, Smolkin; Faulkner, Leigh, Parrikar

@ Higher order corrections: may still be possible holographically since O
three-point function is fixed by conformal invariance.

Holographic calculation: Casini, Galante, Myers

@ Address IR divergences more thoroughly, perhaps in simplified cases
(e.g. free field theories, 2D models).

Casini, Huerta; Blanco, Casini; Casini, Galante, Myers; Zamolodchikov;...

@ Higher curvature corrections to Einstein equation: Higher order
expansion in RNC, shape deformations of entangling surface.

Rosenhaus, Smolkin; Faulkner, Leigh, Parrikar
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