Title: Entanglement entropy in conformal perturbation theory and the Einstein equation

Date: Feb 02, 2016 02:00 PM

URL: http://pirsa.org/16020011

Abstract: For a CFT perturbed by a relevant operator, the entanglement entropy of a spherical region may be computed as a perturbative expansion in the coupling. A similar perturbative expansion applies for excited states near the vacuum. I will describe a method due to Faulkner for calculating these entanglement entropies, and apply it in the limit of small sphere size. The motivation for these calculations is a recent proposal by Jacobson suggesting an equivalence between the Einstein equation and the "maximal vacuum entanglement hypothesis" for quantum gravity. This proposal relies on a conjecture about the behavior of entanglement entropies for small spheres. The calculations presented here suggest that this conjecture must be modified, but I will discuss how Jacobson's derivation still applies under the modified conjecture.

Pirsa: 16020011 Page 1/32

Entanglement entropy in conformal perturbation theory and the Einstein equation

Antony J. Speranza

Maryland Center for Fundamental Physics University of Maryland College Park

February 2, 2016

AJS arXiv:1602.0xxxx

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

1 / 26

Pirsa: 16020011 Page 2/32

Outline

- Introduction
- Maximal vacuum entanglement
- 3 EE in conformal perturbation theory
- Producing excited states
- **1** EE calculations
- 6 Discussion

◆ロ ト ← 日 ト ← 巨 ト 一 豆 ・ り へ ○・

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

2 / 26

Pirsa: 16020011 Page 3/32

Geometry from Entanglement

Deep connections relating geometry ↔ entanglement

- Area law for black hole entropy: $S_{BH}=\frac{1}{4G_N}A\leftrightarrow$ area law for entanglement entropy: $S_{EE}\propto a^{-d+2}A$ Sorkin; Bombelli, Koul, Lee, Sorkin; Srednicki; Frolov, Novikov
- Ryu-Takayanagi formula for holographic theories: $S_{\Sigma}=\frac{1}{4G_N}M(\Sigma)$ Ryu, Takayanagi; Hubeny, Rangamani, Takayanagi
- Derive linearized Einstein equation in the bulk from RT
 Lashkari, Mcdermott, Van Raamsdonk; Faulkner, Guica, Hartman, Myers, Van Raamsdonk; Swingle, Van Raamsdonk
- Maximal vacuum entanglement equivalent to Einstein equation
 Jacobson; Casini, Galante, Myers; Carroll, Remmen; Varadarajan; AJS

◆ロト ◆母 ト ◆豆 ト ◆豆 ト 豆 りゅつ

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

MVEH

The entanglement entropy of a small, geodesic ball at fixed volume is maximal in a vacuum configuration of quantum fields coupled to gravity.

$$\begin{split} \delta S &= \delta S_{\text{UV}} + \delta S_{\text{IR}} = 0. \\ \delta S_{\text{UV}} &= \eta \delta A \to \text{area law}. \\ \delta S_{\text{IR}} &\to \text{EE of matter fields}. \end{split}$$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

$$\delta S_{\mathsf{UV}} = \eta \delta A$$

- Usual area law for entanglement entropy
- ullet η is divergent, regularization dependent
- ullet Postulate that QG renders η finite and universal
- Will find $\eta = \frac{1}{4G_N}$ from MVEH

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

$$\delta S_{\mathsf{UV}} = \eta \delta A$$

- Usual area law for entanglement entropy
- ullet η is divergent, regularization dependent
- ullet Postulate that QG renders η finite and universal
- Will find $\eta = \frac{1}{4G_N}$ from MVEH

Relate to curvature:

- Assume background metric is maximally symmetric, $G_{ab}^{\rm MSS} = -\Lambda g_{ab}$.
- Express metric near the center of the ball in Riemann normal coordinates.
- Change in area, holding volume fixed is

$$\delta A = -\frac{\Omega_{d-2}R^d}{d^2 - 1}(G_{00} + \Lambda g_{00})$$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

 $\delta S_{\rm IR}$: at first order, given by first law of entanglement entropy

$$\delta S_{\mathsf{IR}} = 2\pi \delta \langle K \rangle$$

and the modular Hamiltonian is defined by

$$\rho = e^{-2\pi K}/Z$$

For a CFT,

$$K = \int_{\Sigma} d\Sigma^{a} \zeta^{b} T_{ab}$$
$$= \int_{\Sigma} d\Omega_{d-2} dr \, r^{d-2} \left(\frac{R^{2} - r^{2}}{2R} \right) T_{00}$$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

 $\delta S_{\rm IR}$: at first order, given by first law of entanglement entropy

$$\delta S_{\mathsf{IR}} = 2\pi \delta \langle K \rangle$$

and the modular Hamiltonian is defined by

$$\rho = e^{-2\pi K}/Z$$

For a CFT,

$$K = \int_{\Sigma} d\Sigma^{a} \zeta^{b} T_{ab}$$
$$= \int_{\Sigma} d\Omega_{d-2} dr \, r^{d-2} \left(\frac{R^{2} - r^{2}}{2R} \right) T_{00}$$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

In the CFT case,

$$\delta S_{\mathsf{IR}} = 2\pi \frac{\Omega_{d-2} R^d}{d^2 - 1} \delta \langle T_{00} \rangle$$

Then requiring $\delta S = \delta S_{\mathsf{UV}} + \delta S_{\mathsf{IR}} = 0$ gives

$$G_{00} + \Lambda g_{00} = \frac{2\pi}{\eta} \delta \langle T_{00} \rangle$$

Impose $\delta S=0$ at all points and in all Lorentz frames, and conservation of T_{ab} to get Einstein equation with cosmological constant.

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Non-CFT: enough if

$$\delta S_{\mathsf{IR}} = 2\pi \frac{\Omega_{d-2} R^d}{d^2 - 1} (\delta \langle T_{00} \rangle + C g_{00})$$

Then same argument gives $\Lambda(x) = C(x) + \Lambda_0$, and again recover Einstein equation.

- Requirement on C: scalar under Lorentz boosts.
- C could be state-dependent, operator-dependent.
- Will find that C depends on R in some cases: discuss later in the talk.

Focus on evaluating δS_{IR} for CFT perturbed by relevant operator.

See also Casini, Galante, Myers, arXiv:1601.00528

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Efficient technique for calculating EE of spheres developed by Faulkner arXiv:1412.5648.

- ullet Deform CFT action $I=I_0+\int f(x)\mathcal{O}(x)$, operator dimension $\Delta.$
- $f(x) = g(x) + \lambda(x)$, g represents a theory deformation, λ produces excited state.
- Expand entanglement entropy perturbatively,

$$\delta S = S_g + S_{\lambda} + S_{g^2} + S_{g\lambda} + S_{\lambda^2} + \dots$$

• Look at terms that are $O(\lambda^1)$, any order in g.

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Path integral representation of density matrix

$$\langle \phi_{-} | \rho | \phi_{+} \rangle = \frac{1}{N} \int_{\substack{\phi(\Sigma_{+}) = \phi_{+} \\ \phi(\Sigma_{-}) = \phi_{-}}}^{\phi(\Sigma_{+}) = \phi_{+}} \mathcal{D}\phi \, e^{-I_{0} - \int f\mathcal{O}}$$

$$= \frac{1}{Z + \delta Z} \int_{\substack{\phi(\Sigma_{+}) = \phi_{+} \\ \phi(\Sigma_{-}) = \phi_{-}}}^{\phi(\Sigma_{+}) = \phi_{+}} \mathcal{D}\phi \, e^{-I_{0}} \left(1 - \int f\mathcal{O} + \frac{1}{2} \iint f\mathcal{O}f\mathcal{O} - \dots \right)$$

Viewed as evolution from Σ_+ to Σ_- with $\rho_0=e^{-2\pi K}/Z$, gives operator expression

$$\delta
ho = -
ho_0 \int f \mathcal{O} + \frac{1}{2}
ho_0 \iint T \left\{ f \mathcal{O} f \mathcal{O} \right\} - \ldots - \mathsf{traces}$$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Perturbative expansion of entanglement entropy

$$S = -\operatorname{Tr}\rho\log\rho$$

Logarithm involves commutators $[\rho_0, \delta \rho]$ from BCH. Instead use resolvent integral,

$$S = \int_0^\infty d\beta \left[\text{Tr} \left(\frac{\rho}{\rho + \beta} \right) - \frac{1}{1 + \beta} \right]$$
$$= S_0 + \text{Tr} \int_0^\infty d\beta \frac{\beta}{\rho_0 + \beta} \left[\frac{\delta \rho}{\rho_0 + \beta} - \delta \rho \frac{1}{\rho_0 + \beta} \delta \rho \frac{1}{\rho_0 + \beta} + \dots \right]$$

First term $\delta S^{(1)} = 2\pi \delta \langle K \rangle$, EE 1st law.

Second term $\delta S^{(2)}$ requires more work, but (surprisingly!) can be written holographically...

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Written as integral over AdS_{d+1} Rindler horizon,

$$\delta S^{(2)} = -2\pi \int_{\mathcal{H}^+} d\Sigma^a \xi^b T_{ab}^B$$

 ϕ satisfies Klein-Gordon equation, mass $m^2=\Delta(\Delta-d)$, stress tensor

$$T_{ab}^{B} = \partial_{a}\phi\partial_{b}\phi - \frac{1}{2}g_{ab}(m^{2}\phi^{2} + (\partial\phi)^{2})$$

Shown to be equivalent to RT at this order

Faulkner; Faulkner, Guica, Hartman, Myers, Van Raamsdonk

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

 $\xi^b T^B_{ab}$ is a conserved current o deform surface to ${\mathcal E}$ and ${\mathcal T}$

- Finite terms
- ullet divergence in z_0

- ullet Finite terms $\propto \langle \mathcal{O} \rangle$
- ullet z_0 counterterms
- counterterm canceling $\delta S^{(1)}$ stress tensor divergence

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Producing excited states

Two requirements

1 ρ is Hermitian:

When ρ defined by path integral over action $I = I_0 + \int f \mathcal{O}$,

requires f(au)=f(- au) Also implies that $\partial_{ au}f(0)=0$, $\partial_{ au}^3f(0)=0\dots$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

Producing excited states

Two requirements

 \bullet ρ is Hermitian:

When ρ defined by path integral over action $I=I_0+\int f\mathcal{O}$, requires $f(\tau)=f(-\tau)$

Also implies that $\partial_{\tau} f(0) = 0$, $\partial_{\tau}^{3} f(0) = 0 \dots$

Expectation values are UV finite:
At O()1) expectation value

At $O(\lambda^1)$, expectation value

$$\delta \langle \mathcal{O}(0) \rangle = -\int d^d x \lambda(x) \Big\langle \mathcal{O}(0) \mathcal{O}(x) \Big\rangle_0 = -\int d^d x \frac{\lambda(x) c_{\Delta}}{x^{2\Delta}}$$

Diverges like $\lambda(0)\delta^{d-2\Delta}$. Subleading divergences $\sim \partial_{\tau}^{2n}\lambda(0)\delta^{d-2\Delta+2n}$. Require $\lambda(0)$, and first 2q τ -derivatives vanish, with

$$q = \left[\Delta - \frac{d}{2}\right]$$

EE calculations

Bulk solutions for $\phi(x)$

- ϕ satisfies a linear equation $\rightarrow \phi = \phi_g + \phi_\lambda$, theory and state deformations.
- Focus on small spheres \to take $\lambda(\tau, x) = \lambda(\tau)$ spatially constant.
- Fourier decomposition $\rightarrow \lambda(\tau) = \int_0^\infty d\omega \lambda_\omega \cos \omega \tau$.
- Bulk solution for each frequency

$$\phi_{\omega} = \lambda_{\omega} \left(\frac{\omega}{2}\right)^{\Delta - \frac{d}{2}} \frac{2z^{\frac{d}{2}} K_{\alpha}(\omega z)}{\Gamma(\Delta - \frac{d}{2})} \cos \omega \tau, \qquad \alpha = \frac{d}{2} - \Delta$$
$$\xrightarrow{\frac{z \to 0}{\tau = 0}} \lambda_{\omega} z^{d - \Delta} + \beta_{\omega} z^{\Delta}$$

Operator expectation value

$$\delta\langle\mathcal{O}\rangle = \lambda_{\omega} = (d - 2\Delta)\beta_{\omega} = \frac{2\Gamma(\Delta - \frac{d}{2} + 1)}{\Gamma(\Delta - \frac{d}{2})} \left(\frac{\omega}{2}\right)^{2\Delta - d}.$$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Bulk theory deformation $\phi_g = gz^{d-\Delta}$. Expand ϕ_{ω} near z = 0 and fluxes at $O(\lambda^1 g^1)$

$$\int_{\mathcal{E}} d\Sigma^a \xi^b T_{ab}^B$$

$$= R^{d} \sum_{n=0}^{\infty} \left[\lambda_{\omega} R^{d-2\Delta} a_{n} (\omega R)^{2n} + \beta_{\omega} b_{n} (\omega R)^{2n} \right] - \int_{\Sigma} \zeta^{t} g \Delta \beta_{\omega}$$

Impose $\int_0^\infty d\omega \, \omega^{2j} \lambda_\omega = 0$ for $j \leq q$. \rightarrow All terms subdominant to R^d as $R \rightarrow 0$.

 $\int_{\mathcal{T}} d\Sigma^a \xi^b T^B_{ab}$: Only finite term is from $t \lesssim z_0$, gives

$$- \int_{\Sigma} \zeta^{t} g \Delta \beta_{\omega}$$

$$= \frac{\Omega_{d-2} R^{d}}{d^{2} - 1} \left[\frac{\Delta}{2\Delta - d} g \delta \langle \mathcal{O} \rangle \right]$$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Bulk theory deformation $\phi_g = gz^{d-\Delta}$. Expand ϕ_{ω} near z = 0 and fluxes at $O(\lambda^1 g^1)$

$$\int_{\mathcal{E}} d\Sigma^a \xi^b T_{ab}^B$$

$$= R^{d} \sum_{n=0}^{\infty} \left[\lambda_{\omega} R^{d-2\Delta} a_{n} (\omega R)^{2n} + \beta_{\omega} b_{n} (\omega R)^{2n} \right] - \int_{\Sigma} \zeta^{t} g \Delta \beta_{\omega}$$

 $\begin{array}{ll} \operatorname{Impose} \ \int_0^\infty d\omega \ \omega^{2j} \lambda_\omega = 0 \ \text{for} \ j \leq q. \\ \to \ \text{All terms subdominant to} \ R^d \ \text{as} \ R \to 0. \end{array} \qquad = \frac{\Omega_{d-2} R^d}{d^2 - 1} \left[\frac{\Delta}{2\Delta - d} g \delta \langle \mathcal{O} \rangle \right]$

 $\int_{\mathcal{T}} d\Sigma^a \xi^b T^B_{ab}$: Only finite term is from $t \lesssim z_0$, gives

$$-\int_{\Sigma} \zeta^{t} g \Delta \beta_{\omega}$$

$$= \frac{\Omega_{d-2} R^{d}}{d^{2} - 1} \left[\frac{\Delta}{2\Delta - d} g \delta \langle \mathcal{O} \rangle \right]$$

4ロト 4回ト 4 差ト 4 差ト 差 りな()

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Bulk theory deformation $\phi_g = gz^{d-\Delta}$. Expand ϕ_{ω} near z = 0 and fluxes at $O(\lambda^1 g^1)$

$$\int_{\mathcal{E}} d\Sigma^a \xi^b T_{ab}^B$$

$$= R^{d} \sum_{n=0}^{\infty} \left[\lambda_{\omega} R^{d-2\Delta} a_{n} (\omega R)^{2n} + \beta_{\omega} b_{n} (\omega R)^{2n} \right] - \int_{\Sigma} \zeta^{t} g \Delta \beta_{\omega}$$

 $\begin{array}{l} \operatorname{Impose} \ \int_0^\infty d\omega \, \omega^{2j} \lambda_\omega = 0 \ \text{for} \ j \leq q. \\ \to \ \text{All terms subdominant to} \ R^d \ \text{as} \ R \to 0. \end{array} \qquad = \frac{\Omega_{d-2} R^d}{d^2 - 1} \left[\frac{\Delta}{2\Delta - d} g \delta \langle \mathcal{O} \rangle \right]$

 $\int_{\mathcal{T}} d\Sigma^a \xi^b T^B_{ab}$: Only finite term is from $t \lesssim z_0$, gives

$$-\int_{\Sigma} \zeta^{t} g \Delta \beta_{\omega}$$

$$= \frac{\Omega_{d-2} R^{d}}{d^{2} - 1} \left[\frac{\Delta}{2\Delta - d} g \delta \langle \mathcal{O} \rangle \right]$$

< ロ ト 4 回 ト 4 巨 ト 4 巨 ト 三 り 9 (

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Still need the first law piece,

$$\delta S^{(1)} = 2\pi \frac{\Omega_{d-2} R^d}{d^2 - 1} \delta \langle T_{00}^0 \rangle$$

Write in terms of the deformed theory stress tensor and trace,

$$T_{ab}^g = T_{ab}^0 - g\mathcal{O}g_{ab}, \qquad \langle T^g \rangle = (\Delta - d)g\langle \mathcal{O} \rangle.$$

Final answer is

$$\delta S_{\lambda g} = 2\pi \frac{\Omega_{d-2} R^d}{d^2-1} \left(\delta \langle T_{00}^g \rangle - \frac{1}{2\Delta-d} \delta \langle T^g \rangle \right) + \text{subleading}$$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

New feature: IR divergence. Consider the vev

$$\langle \mathcal{O}(0) \rangle_g = -\int d^d x g(x) \Big\langle \mathcal{O}(0) \mathcal{O}(x) \Big\rangle_0 = -\int d^d x \frac{c_\Delta g(x)}{x^{2\Delta}}.$$

Cut off g(x) at distance L, vev scales as $L^{d-2\Delta} \to \text{divergent when } \Delta \leq \frac{d}{2}$.

L determined by the coupling $L \sim g^{\frac{1}{\Delta - d}} \rightarrow$ nonperturbative.

 $R \ll L$, use IR cutoff and write everything in terms of $\langle \mathcal{O} \rangle_g$.

E.g. bulk solution on \mathcal{E} :

$$\phi_g = gz^{d-\Delta} - \frac{\langle \mathcal{O} \rangle_g}{2\Delta - d} z^{\Delta}$$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

State deformation solution: Keep leading terms in (ωR) expansion:

$$\phi_{\omega} = \lambda_{\omega} z^{d-\Delta} - \frac{\delta \langle \mathcal{O} \rangle}{2\Delta - d} z^{\Delta}$$

 \mathcal{E} surface:

$$\delta S_{\mathcal{E}}^{(2)} = -2\pi R^{2\Delta} \langle \mathcal{O} \rangle_g \delta \langle \mathcal{O} \rangle \frac{\Omega_{d-2}}{d^2-1} A(\Delta,d) + z_0 \text{-div}.$$

$$A(\Delta, d) = \frac{\Delta\Gamma(\frac{d}{2} + \frac{3}{2})\Gamma(\Delta - \frac{d}{2} + 1)}{(2\Delta - d)^2\Gamma(\Delta + \frac{3}{2})}$$

 $\mathcal T$ surface:

$$\delta S_{\mathcal{T}}^{(2)} = 2\pi R^d \frac{\Omega_{d-2}}{d^2 - 1} \frac{\Delta g \delta \langle \mathcal{O} \rangle}{2\Delta - d} + z_0 \text{-c.t.}$$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Final Result:

$$\delta S_{\lambda g} = \frac{2\pi\Omega_{d-2}}{d^2 - 1} \left[R^d \left(\delta \langle T_{00}^g \rangle - \frac{1}{2\Delta - d} \delta \langle T^g \rangle \right) - R^{2\Delta} \langle \mathcal{O} \rangle_g \delta \langle \mathcal{O} \rangle A(\Delta, d) \right]$$

Since $\Delta < \frac{d}{2}$, when R is small enough, the second term dominates over the first.

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

New feature: Renormalization scale.

For the vev

$$\langle \mathcal{O}(0) \rangle_g = -\int d^d x \frac{g c_{\Delta}}{x^d} = -g c_{\Delta} \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})} \int \frac{d\tau}{\tau}$$

Logarithmically divergent. Point-splitting regulator (cutoff for $|\tau| < \delta$) also needs a cutoff at renormalization scale $|\tau| \ge \mu^{-1}$. Gives

$$\langle \mathcal{O} \rangle_g^{\mathsf{div.}} = -gc_\Delta \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})} 2\log \mu \delta$$

Renormalized vev with IR cutoff subtracts off this divergence, giving

$$\langle \mathcal{O} \rangle_g^{\mathsf{ren.}} = -gc_\Delta \frac{\pi^{\frac{d}{2}}}{\Gamma(\frac{d}{2})} 2\log \mu L$$

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Remainder of the calculation proceeds as before. Result:

$$\delta S_{\lambda g} = \frac{2\pi\Omega_{d-2}R^d}{d^2 - 1} \left[\delta \langle T_{00}^g \rangle + \delta \langle T^g \rangle \left(\frac{2}{d} - \frac{1}{2} H_{\frac{d+1}{2}} + \log \frac{\mu R}{2} \right) - \frac{d}{2} \langle \mathcal{O} \rangle_g \delta \langle \mathcal{O} \rangle \right]$$

- ullet μ dependence cancels between $\log \frac{\mu R}{2}$.
- ullet Expression in terms of IR cutoff L has no μ ambiguity.
- $R^d \log R$ term dominates as $R \to 0$.

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Discussion

Summary of results

- Calculated entanglement entropy in CFT perturbed by relevant \mathcal{O} , first order change relative to the vacuum.
- Extended Faulkner's calculation to $\Delta \leq \frac{d}{2}$ when $R \ll L$, answer depends on nonperturbative vev $\langle \mathcal{O} \rangle_g$.
- For $\Delta \leq \frac{d}{2}$, the $\delta \langle T_{00}^g \rangle$ term is subdominant as $R \to 0$.

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Discussion: Implications for Einstein Equation

Conjectured form of δS_{IR}

$$\delta S_{\mathsf{IR}} = 2\pi \frac{\Omega_{d-2} R^d}{d^2 - 1} (\delta \langle T_{00} \rangle + C g_{00})$$

- ullet C must transform as a scalar o supported by these calculations. State is stationary on times scales $\sim R$, boosted state will be characterized by same operator expectation values.
- C contains a term $\sim R^{2\Delta-d}$ (or $\log R$), which dominates at small R when $\Delta \leq \frac{d}{2}$.
- Proposal (Jacobson): Allow local curvature scale $\Lambda(x)$ to be R-dependent.

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Discussion: Implications for Einstein Equation

$$\Lambda = \Lambda(R)$$
:

When $\Delta < \frac{d}{2}$, as $R \to 0$,

$$\Lambda(R) = \frac{2\pi}{\eta} C \sim \ell_P^{d-2} R^{2\Delta - d} \delta \langle \mathcal{O} \rangle^2$$

Require $\Lambda(R)R^2\ll 1$ to justify flat space modular Hamiltonian, neglecting higher curvature.

$$\Rightarrow \frac{R}{\ell_P} \ll \left(\frac{1}{\ell_P^{2\Delta} \delta \langle \mathcal{O} \rangle^2}\right)^{\frac{1}{2\Delta - d + 2}}$$

Require $\Lambda(R)\ell_P^2\gg 1$ to avoid strong QG effects

$$\Rightarrow \frac{R}{\ell_P} \gg \left(\ell_P^{2\Delta} \delta \langle \mathcal{O} \rangle^2\right)^{\frac{1}{d-2\Delta}}$$

Wide range of R values satisfying these.

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

Discussion: Future work

Investigate Lorentz transformations more thoroughly

Rosenhaus, Smolkin; Faulkner, Leigh, Parrikar

ullet Higher order corrections: may still be possible holographically since ${\cal O}$ three-point function is fixed by conformal invariance.

Holographic calculation: Casini, Galante, Myers

 Address IR divergences more thoroughly, perhaps in simplified cases (e.g. free field theories, 2D models).

Casini, Huerta; Blanco, Casini; Casini, Galante, Myers; Zamolodchikov;...

 Higher curvature corrections to Einstein equation: Higher order expansion in RNC, shape deformations of entangling surface.

Rosenhaus, Smolkin; Faulkner, Leigh, Parrikar

←□ → ←□ → ← □ → ← ← → ○ へ()

A.J. Speranza (UMD)

EE in conf. pert. th. and Einstein equation

February 2, 2016

6 / 26

Pirsa: 16020011 Page 32/32