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Abstract: <p>Bell inequalities bound the strength of classical correlations arising between outcomes of measurements performed on subsystems of a
shared physica system. The ability of quantum theory to violate Bell inequalities has been intensively studied for several decades. Recently, there
has been an increased interest in studying physical correlations beyond the scenario of Bell inequalities, to more general network structures
involving many sources of physical states and observers that may be measuring on subsystems of independent states. Much less is known about the
nature of physical correlations in networks as compared to standard Bell inequalities. In this talk we will discuss the motivation and interest for
studying such network correlations, review the recent progress in understanding such networks, and discuss the many open questions and new
possible directions for research on this topic.</p>
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Outline

. Broad introduction to Bell experiments

. What is interesting about correlations on networks?

. Defining and quantifying classical correlations in networks
. Some results on quantum correlations in networks

. Particular open problems
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The simplest correlation experiment
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The simplest correlation experiment
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1. What can correlations tell us about the physics governing the system?

2. How strong can these correlations be, given a physical theory?
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Intuition for classical probability distributions

P(a,b|x,y) = fq(.&lx,y)P(a, blx,y,A)dA
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Intuition for classical probability distributions

Trivial ! P(a,b|x,y) = fq(.&lx,y)P(a, blx,y,A)dA

[

Independence P(a,blx,y) = fq(xl)l’(a.bbf- y,A)dA

of Cause
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Intuition for classical probability distributions

Trivial ! P(a,b|x,y) = fq(.&lx,y)P(a, blx,y,A)dA
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Independence B
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Intuition for classical probability distributions

Trivial ! P(a,b|x,y) = fq(.&lx,y)P(a, blx,y,A)dA

[

Independence _

of Cause P(a,blx,y) = fq(/l)P(a,blx, y,A)dA
Locality Pa,blxy) = [ a)P(alxy, DP(blxy, d2
No-signaling P(a,blx,y) = fq(ﬁ)P(alx,A)P(b|y,A)d&
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Bell inequalities

Coefficients X P(a, b|x,y) < Classical bound

measurements
outcomes
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Bell inequalities

Coefficients X P(a, b|x,y) < Classical bound

measurements
outcomes

The CHSH inequality:
S¢ = (AoBy) + (ABy) + (A1 By) — (A1By) < 2
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Bell inequalities

Coefficients X P(a, b|x,y) < Classical bound

measurements
outcomes

The CHSH inequality:
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Bell inequalities

Coefficients X P(a, b|x,y) < Classical bound

measurements
outcomes

The CHSH inequality:
S¢ = (AoBy) + (ABy) + (A1 By) — (A1By) < 2

By sharing a singlet state [)~) QM achieves: S9< 22

Stregnth of
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Bell inequalities

Coefficients X P(a, b|x,y) < Classical bound

measurements
outcomes

The CHSH inequality:
S¢ = (AoBy) + (ABy) + (A1 By) — (A1By) < 2

By sharing a singlet state [)~) QM achieves: S9< 22

Stregnth of
correlations:

1 1
P = U|lf}_)(1!)_| + (1 - U)Z Veritical = E
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Networks: going beyond the Bell experiments

Al C!

Az CZ
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Networks: going beyond the Bell experiments

Al C!

Az CZ

1. Stronger constraints on classical and quantum correlations as compared to
Bell experiments.
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Networks: going beyond the Bell experiments

Al C!

A? C2
Stronger constraints on classical and quantum correlations as compared to

Bell experiments.

Networks could lead to stronger quantum correlations than in Bell
experiments
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Networks: going beyond the Bell experiments

Al C!

A? C2
1. Stronger constraints on classical and quantum correlations as compared to

Bell experiments.

2. Networks could lead to stronger quantum correlations than in Bell Nature Comms
experiments 2, 184 (2010)
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Networks: going beyond the Bell experiments

Al C!

Az CZ

1. Stronger constraints on classical and quantum correlations as compared to
Bell experiments.

Nature Comms

2. Networks could lead to stronger quantum correlations than in Bell
2, 184 (2010)

experiments

3. Quantu correlations in networks can be relevant for large-scale quantum
communication systems.
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Classical correlations in a network
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Classical correlations in a network

For a Bell experiment: P(a,b|x,y) = jq(/DP(alx,fl)P(bly,fl)df1
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Classical correlations in a network

For a Bell experiment: P(a,blx,y) = Jq(/l)P(a|x,,1)p(b|y,A)dA
X y ,
- * - 4 - Phys. Rev. Lett. 104,
170401 (2010)
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Classical correlations in a network

For a Bell experiment: P(a,b|x,y) = Jq(/DP(alx,fl)P(ny,ﬂx)df1
X y z
G A] @ AZ @

Phys. Rev. Lett. 104,

¢m—Q==) 170401 (2010)

§. ¢, ¥

P(a,b,clx,y,z) = fdf{ldﬁth(fll)qz(ﬁz)P(fﬂx:ﬁl)P(ﬂZ’,Az)P(bD’-;{l:/12)

1. Sources are assumed independent

2. Outcomes are deterministically infered from the measurement setting are relevant
hidden variables.
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Star networks

Quantum correlations in
connected multipartite Bell
experiments [accepted in
JPA]

Three partite. Two branches.

Bipartite. Three branches.

Phys. Rev. A 90, 062109 (2014)
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Star networks

Quantum correlations in
connected multipartite Bell
experiments [accepted in
JPA]

Three partite. Two branches.

Actions at center node:

1. Local wiring of many measurements Bipartite. Three branches.

outcomes
Phys. Rev. A 90, 062109 (2014)

2. Joint many-qubit measurements
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Classical correlations: loss of convexity

“ll/n + Ull/n < 1

Bell inequality for bipartite
star with n branches.
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“ll/n + Ull/n < 1

Bell inequality for bipartite
star with n branches.
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Classical correlations: loss of convexity

I;;:c;lr\cr | |l | 1/n + U | 1/n < 1

3-local set

| s el T el inequality for bipartite
0.5l , - star with n branches.
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Phys. Rev. A 90, 062109 (2014)
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Classical correlations: loss of convexity
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Bell inequality for bipartite
star with n branches.
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Bell inequality: Bell inequality:
|Ky |V2 + | Ky |2 + | K |2 + K |V2 < 1 Mermin’s inequality
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Bell inequality:

Bell inequality:
|Ky 12 + Ko%K Y2+ Ky |V2 <1

Mermin’s inequality

(1]
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Bell inequality:

Bell inequality:
|Ky |V2 + | Ky |2 + | K |2 + K |V2 < 1 Mermin’s inequality
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Quantum correlations on star networks
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Quantum correlations on star networks
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Quantum correlations on star networks

Local wiring in the node: Correlations of the same
strength as in Bell experiments.
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Quantum correlations on star networks

Local wiring in the node: Correlations of the same
strength as in Bell experiments.

19™)

|¢+‘>/ \q«m

ty = o
[9*) = 7=1100) +11)]

Project the three particles into a basis.of
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Quantum correlations on star networks

Local wiring in the node: Correlations of the same
strength as in Bell experiments.

|$™)
Project the three particles into a basis.of
entangled GHZ-like states! |GHZ) = —[|000) + |111
[ ), entang (GHZ) = 7[1000) + 111))
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Iterative methods
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Iterative methods

Main idea: Build the network step by step by adding one source
connecting a new observer in every step, and each time derive a

new Bell inequality. Phys. Rev. Lett. 116,
010403 (2016).
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Iterative methods

Main idea: Build the network step by step by adding one source
connecting a new observer in every step, and each time derive a

new Bell inequality. Phys. Rev. Lett. 116,
010403 (2016).

Generalization: Bell inequalities for arbitrary noncyclic

networks. Rapid Comms PRA

(2016) [accepted]
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Iterative methods

Main idea: Build the network step by step by adding one source
connecting a new observer in every step, and each time derive a

new Bell inequality. Phys. Rev. Lett. 116,
010403 (2016).

Generalization: Bell inequalities for arbitrary noncyclic
networks. Rapid Comms PRA
(2016) [accepted]

Example: Find a Bell inequality for ...

Cl
Al — 3 A’ =) B {
CZ
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Start from the basics Al ¢ o) A’

where CHSH holds.
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Start from the basics
where CHSH holds.

Al m@mm) A

Then add a source

and a new party. Al omuudp 4’ |(em@um) B
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Start from the basics
where CHSH holds.

Al mQumdp A

Then add a source

and a new party. Al omuudp 4’ |(em@um) B

Cl
Then add a source
and .two new Al ) 4 B
parties.

CZ
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Start from the basics
where CHSH holds.

Al mQumdp A

Then add a source

and a new party. Al omuudp 4’ |(em@um) B

Cl
Then add a source
and .two new Al ) 4 B
parties.

CZ

Iterative method: We can find a Bell inequality on any
noncyclic network.
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Local wiring: Mermin-like scaling of visibilities

Three party Bell experiment Noncyclic Networks e.g. ...
Al C]
>_‘ A Q) p
A o
For N-party Bell experiment: 1
| P —
Voris = L EFES \/ 2#observers—1
crit ZN_I

For all investigated networks with local wiring
strategy at the nodes, Mermin-like scaling of visibility
has been encountered.
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Open problem 1: find an advantage!

1. More settings?
2. More outcomes?

3. Numerical non-convex optimization of correlations.
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Open problem 2: cyclic networks

22 Ay

C
A @) B
A

P(a,b,clx,y, z) = ffMldflz(M:#h(/11)(!2(32)(]3(/13) X

X P((llx, AI;AZ)P(M)’; ’1]: A."I)P(Clzr AZ: /13)
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Thank you!
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