Title: Disorder operators in Chern-Simons-fermion theories

Date: Dec 14, 2015 11:00 AM

URL: http://pirsa.org/15120037

Abstract: <p>We compute the scaling dimensions of a large class of disorder operators ("monopoles") in the planar limit of CS-fermion theories. The lightest such operator is shown to have dimension (2/3) $k^{(3/2)}$, where k is the CS level. The computation is based on recently developed techniques for solving CS-matter at all 't Hooft couplings, and the operator dimensions are obtained by finding complex saddles in the low-temperature phase of the CS-fermion path integral in a monopole background. We will also discuss the implications of this result to 3D bosonization dualities.</p>

Disorder Operators in Chern-Simons-Fermion Theories

Đorđe (Djordje) Radičević

Stanford Institute for Theoretical Physics, Stanford, CA djordje@stanford.edu arXiv:1511.01902

> Perimeter Institute 14 December 2015

> > \leftarrow \Box \rightarrow

一つりょう

化氯苯 化重压

 DQ

1 Introduction

- \bullet CS-matter theories
- \bullet Spectral explorations
- \bullet Disorder operators

2 Dimensions of disorder operators

- \bullet Outline of the calculation
- \bullet The machinery
- Single eigenvalue excursions, complex saddles, and monopoles

³ Implications

- \bullet More symmetries?
- \bullet Bosonization

Future work

D. Radičević (Stanford)

 $\begin{array}{c} 0 & 0 \\ 0 & 0 \end{array}$ **Britannia** 重

> 14 Dec 2015 $2/18$

Chern-Simons-matter

- Chern-Simons (CS) theory: topological, exactly solvable, a remarkable playground for studying gauge theories and gravity, and experimentally relevant [Witten; many, many others]
- $CS + fundamental$ matter: a subtle cousin of 3D QCD with many nontrivial fixed points and interesting higher-spin bulk duals [Klebanov, Polyakov; Giombi, Yin]
- A wealth of CFTs in the planar limit solvable even without supersymmetry [Aharony, Giombi, Gur-Ari, Jain, Maldacena, Minwalla, Sharma, Shenker, Takimi, Trivedi, Wadia, Yacoby, Yin, Yokoyama, ...]

D. Radičević (Stanford)

スタメ スラン スラン

14 Dec 2015

 OQ

 $3/18$

Þ

The planar limit

- Focus on CS-matter theories obtained by gauging a $U(N)$ symmetry of vector-like CFTs (free boson/fermion, Wilson-Fisher, Gross-Neveu) and adding a CS term at level k
- Planar limit: $N, k \to \infty$ with fixed 't Hooft coupling $\lambda = \frac{N}{k}$
- Important technicality: gluon loops are regulated using dimensional reduction [Chen, Semenoff, Wu] $\implies |\lambda| \leq 1$
- $\lambda = 0$: free theory (singlet sectors of vector models) $\lambda \rightarrow \pm 1$: (almost) pure CS

D. Radičević (Stanford)

∢ 何 ▶ 『 ミ ヨ ▶ 『 ヨ ▶

14 Dec 2015

重

 Ω

 $4 / 18$

Phenomenology

• At all λ , it is possible to calculate thermal partition functions, correlators, β -functions, the low-lying spectrum, etc.

• 3D bosonization

regular boson \leftrightarrow GN fermion regular fermion \leftrightarrow WF boson

$$
\frac{N_F}{\lambda_F} = -\frac{N_B}{\lambda_B}
$$

$$
|\lambda_B| + |\lambda_F| = 1
$$

Both sides of the duality map to the same gravity theory [e.g. Chang, Minwalla, Sharma, Yin]

D. Radičević (Stanford)

The spectrum of CS-matter theories

• Low-dimension operators are higher-spin currents organized in a rigid structure [Maldacena, Zhiboedov] — what else is there?

• Two types of operators with dimensions of order N or higher

- Baryons $B = \epsilon^{i_1...i_N} \psi_{i_1} \dots \psi_{i_N}$, naïvely $\Delta_B = N$ [Shenker, Yin]
- Disorder operators ("monopoles") $\mathcal O$ unit magnetic flux + Fermi sea of matter, naïvely $\Delta_{\mathcal{O}} = \frac{2}{3}k^{3/2}$ [Pufu]

D. Radičević (Stanford)

14 Dec 2015 $6/18$

∢ 何 ≯ → (三) → 三 →

 OQ

重

The spectrum of CS-matter theories

• Low-dimension operators are higher-spin currents organized in a rigid structure [Maldacena, Zhiboedov] — what else is there?

• Two types of operators with dimensions of order N or higher

- Baryons $B = \epsilon^{i_1...i_N} \psi_{i_1} \dots \psi_{i_N}$, naïvely $\Delta_B = N$ [Shenker, Yin]
- Disorder operators ("monopoles") \mathcal{O} unit magnetic flux + Fermi sea of matter, naïvely $\Delta_{\mathcal{O}} = \frac{2}{3}k^{3/2}$ [Pufu]

Understanding this is the topic of this talk!

D. Radičević (Stanford)

 OQ

 $6/18$

重

スタメ スラメス ラメ

14 Dec 2015

Disorder operators in 3D gauge theories

• Any gauge theory on \mathbb{R}^3 can have local operators $\mathcal{O}(x)$ whose insertion in the path integral makes the field strength vev obey

$$
\int_{S^2(x)} \langle F \rangle = 4\pi q_i H^i \qquad \text{[Borokhov, Kapustin, Wu]}
$$

 $S^2(x)$: a sphere enclosing the insertion point x H^i : Cartan generators q_i : discrete GNO charges [Goddard, Nuyts, Olive]

- Topological charge $q = \sum_i q_i$
- Despite the lack of topological protection, operators with different GNO charges are often independent [Dyer, Mezei, Pufu]

D. Radičević (Stanford)

 OQ

 $7/18$

重

スタン スミメ スラン

14 Dec 2015

Disorder operators in 3D gauge theories

- In conformal theories, disorder operators correspond to "monopole" states" on the spatial S^2 in radial quantization
- On a unit sphere, monopoles are gauge-equivalent to

$$
\mathcal{A}(\theta,\phi) = q_i H^i \begin{cases} (1-\cos\theta)\mathrm{d}\phi, & \theta \leq \frac{\pi}{2}, \\ (-1-\cos\theta)\mathrm{d}\phi, & \theta \geq \frac{\pi}{2}. \end{cases}
$$
 [Wu, Yang]

• What are their energies?

D. Radičević (Stanford)

 OQ Þ 14 Dec 2015 $8/18$

Plan of attack

- Energies of lightest monopoles in a given GNO class can be found by computing the thermal partition function of states with definite flux through the S^2 , and then taking $T \to 0$ to get $Z = e^{-\Delta_{\mathcal{O}}/T}$
- Aforementioned technical developments allow us to compute this partition function at high temperatures
- Analyticity allows us to extend these results to low-temperature regimes and read off $\Delta_{\mathcal{O}}$

D. Radičević (Stanford)

 OQ - イランド (声) 重 14 Dec 2015 $9/18$

Plan of attack

- Energies of lightest monopoles in a given GNO class can be found by computing the thermal partition function of states with definite flux through the S^2 , and then taking $T \to 0$ to get $Z = e^{-\Delta_{\mathcal{O}}/T}$
- Aforementioned technical developments allow us to compute this partition function at high temperatures
- Analyticity allows us to extend these results to low-temperature regimes and read off $\Delta_{\mathcal{O}}$

D. Radičević (Stanford)

14 Dec 2015

医心理 医心理学

 OQ

 $9/18$

重

Chern-Simons-fermions

 \bullet We compute the thermal partition function at temperature T on a unit sphere with $\mathbf{q} = (q_1, \ldots, q_N)$ units of magnetic flux:

$$
Z_{\mathbf{q}} = \int [\mathrm{d}A \, \mathrm{d}\psi] \, e^{-S[\mathcal{A} + A, \, \psi]}
$$

$$
S = \frac{ik}{4\pi} \int_{S^1 \times S^2} d^3x \,\epsilon^{\mu\nu\rho} \operatorname{Tr} \left(A_\mu \partial_\nu A_\rho + \frac{2}{3} A_\mu A_\nu A_\rho \right) + \int_{S^1 \times S^2} d^3x \,\bar{\psi}_i \gamma^\mu D_\mu \psi_i
$$

$$
D_\mu = \partial_\mu + A_\mu, \quad \operatorname{Tr} (T^a T^b) = -\frac{1}{2} \delta^{ab}, \quad k - \frac{1}{2} \in \mathbb{Z}, \quad |k| > N
$$

÷. 299 \leftarrow \Box メタメ メミメ スミメ $10/18$ 14 Dec 2015

D. Radičević (Stanford)

The high temperature expansion

- At $T \gg 1$, fermions develop large thermal masses and become "confined" into cells of size $1/T$
- High-energy degrees of freedom (energy scales above T) effectively live on flat space and can be integrated using light-cone gauge [Giombi, Minwalla, Prakash, Trivedi, Wadia, Yin]
- This generates an effective potential for the single gauge-invariant, low-energy degree of freedom, the **Polyakov loop** $U = \exp \oint_{S^1} A_3$

$$
Z_{\mathbf{q}} = \int dU \; \Delta(U) \; e^{-S_{\text{CS}}[\mathcal{A}] - 4\pi T^2 \left[v_0(U, \mathcal{A}) + \frac{1}{T^2} v_2(U, \mathcal{A}) + \dots \right]}
$$

D. Radičević (Stanford)

 OQ ∢ 何 * > ミ ミ > → ミ ヨ > ÷. 14 Dec 2015 $11 / 18$

Technical remarks

- To integrate out the low-energy degrees of freedom, we use the maximal torus gauge [Blau, Thompson]
	- $\partial_3 A_3 = 0$ ("temporal" gauge)
	- $U = e^{i\alpha_i H^i}$ (the Polyakov loop is diagonal)
	- $\partial_i A_i = 0$ (Coulomb gauge)
- Diagonalizing the background A to the Wu-Yang form spends some gauge symmetry and "breaks" the gauge group to $U(N_1) \times U(N_2) \times \ldots \times U(N_p)$
- Fixing to maximal torus gauge and integrating out the remaining (non-dynamical) CS fields discretizes some α 's to multiples of $2\pi/k$ and also gives the Vandermonde $\Delta(U)$ of the broken gauge group

←ロメ スタメ スミメ スミメー

14 Dec 2015

D. Radičević (Stanford)

Pirsa: 15120037

重 りょう

 $12 / 18$

The matrix model

- Take $\mathbf{q} = (q, 0, \dots, 0)$; broken gauge group is $U(1) \times U(N 1)$
- In this background, $S_{\text{CS}}[\mathcal{A}] = -ik_0\alpha_1$ [e.g. Kim]
- Yang-Mills-regularized (bare) coupling $k_0 = k N$ sgn k [Aharony]
- Integrating over eigenvalues $\alpha_2, \ldots, \alpha_N$ gives the partition function of the $U(N-1)$ theory without fluxes. The integral over α_1 is the only one that depends on q :

$$
Z_{\mathbf{q}} = Z_0 \int_0^{2\pi} d\alpha_1 e^{ik_0 q \alpha_1 - 4\pi T^2 v_0(\alpha_1)}
$$

D. Radičević (Stanford)

14 Dec 2015 $13 / 18$

重 りょひ

←ロメ → 伊メ → ミメ → ラメー

The single eigenvalue integral

$$
Z_{\mathbf{q}} = Z_0 \int_0^{2\pi} d\alpha_1 e^{ik_0 q \alpha_1 - 4T^2 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} \cos(n\alpha_1)}
$$

- Z_0 is the contribution of single-trace operators (higher-spin currents) on top of a monopole
- The integral over α_1 counts all ways to place qk_0 fermions in $4\pi T^2$ places; this is the sum over all possible monopoles of given GNO flux q
- The lowest energy monopole is found at the complex saddle when $k_0 \sim T^2 \gg 1$ and with $T^2/k_0 \to 0$

• At the saddle point,
$$
Z_{\mathbf{q}} = Z_0 e^{-\frac{2}{3}|q k_0|^{3/2}/T}
$$
 so $\Delta_{\mathcal{O}} = \frac{2}{3}|q k_0|^{3/2}$

D. Radičević (Stanford)

重 りょび

 $14 / 18$

スタメス ミメス ミメ

14 Dec 2015

Comments

- We take $q \ll T^2$ so that matter does not feel the background flux
- Taking $T^2 \ll k_0$ places us below all phase transitions, in a region analytically connected to $T=0$; we expect our result to hold at low temperatures
- Sanity check: without fluxes, $T^2/k_0 \rightarrow 0$ reproduces the free energy of the singlet vector model [Jain et al]
- Another sanity check: at $\lambda \to 0$ and $q = 1$, we have $q k_0 = k$ and our result matches the naïve dimension [Pufu]

D. Radičević (Stanford)

 E Ω イロン マ何つ マミン マラン 14 Dec 2015 $15 / 18$

Protected dimensions

- Dimensions of (lightest) disorder operators are the same at all λ
- \bullet Is there a symmetry that protects them, like the higher-spin symmetry protects single-trace operators?
- Are these dimensions constrained by single-trace operators, like baryon dimensions must be?

Recall: $\bar{B}B \sim (\epsilon \bar{\psi}^N) (\epsilon \psi^N) \sim \sum (\bar{\psi} \psi)^N$

 \rightarrow this drives the GWW transition [Shenker, Yin]

D. Radičević (Stanford)

 Ω 14 Dec 2015 $16 / 18$

3D bosonization duality

- Fermionic disorder operators and bosonic baryons have dimensions that map under bosonization, $\frac{2}{3}N^{3/2} \leftrightarrow \frac{2}{3}|k_0|^{3/2}$
- Higher spin currents are dual to each other; are baryons dual to monopoles?
- Yes! This calculation, and the flow to level-rank duality of pure CS, suggest that the mapping between theories with groups $U(N)_{k,k'} \equiv (SU(N)_k \times U(1)_{k'})/\mathbb{Z}_N$ (with $\frac{1}{2}$ added to the level in fermionic theories) is

 $SU(N)_{k_0} \leftrightarrow U(k_0)_{-N,-N}$ $U(N)_{k_0,k_0} \leftrightarrow SU(k_0)_{-N}$ [Aharony] $U(N)_{k_0,k_0+N} \leftrightarrow U(k_0)_{-N,-N-k_0} \dots$

COX KORX X BIX X

14 Dec 2015

D. Radičević (Stanford)

 OQ

 $17/18$

Open questions

- Baryon dimensions by computing the partition function at a fixed flavor charge
- \bullet Bosonic (and susy) operators difficult due to possible condensation
- \bullet Heavy particles in higher-spin gravity?
- \bullet Lessons for supersymmetric dualities?

Thank you!

