Title: Disorder operators in Chern-Simons-fermion theories

Date: Dec 14, 2015 11:00 AM

URL: http://pirsa.org/15120037

Abstract: $\langle p \rangle$ We compute the scaling dimensions of a large class of disorder operators ("monopoles") in the planar limit of CS-fermion theories. The lightest such operator is shown to have dimension (2/3) $k^{3/2}$, where k is the CS level. The computation is based on recently developed techniques for solving CS-matter at all 't Hooft couplings, and the operator dimensions are obtained by finding complex saddles in the low-temperature phase of the CS-fermion path integral in a monopole background. We will also discuss the implications of this result to 3D bosonization dualities. $\langle p \rangle$

Pirsa: 15120037 Page 1/21

Disorder Operators in Chern-Simons-Fermion Theories

Đorđe (Djordje) Radičević

Stanford Institute for Theoretical Physics, Stanford, CA djordje@stanford.edu arXiv:1511.01902

> Perimeter Institute 14 December 2015

Pirsa: 15120037

- 1 Introduction
 - CS-matter theories
 - Spectral explorations
 - Disorder operators
- 2 Dimensions of disorder operators
 - Outline of the calculation
 - The machinery
 - Single eigenvalue excursions, complex saddles, and monopoles
- 3 Implications
 - More symmetries?
 - Bosonization
- 4 Future work

· (ㅁ) (🗇) (호) (호) (호) · (호) (호)

D. Radičević (Stanford) 14 Dec 2015

Pirsa: 15120037 Page 3/21

Chern-Simons-matter

- Chern-Simons (CS) theory: topological, exactly solvable, a remarkable playground for studying gauge theories and gravity, and experimentally relevant [Witten; many, many others]
- CS + fundamental matter: a subtle cousin of 3D QCD with many nontrivial fixed points and interesting higher-spin bulk duals [Klebanov, Polyakov; Giombi, Yin]
- A wealth of CFTs in the planar limit solvable even without supersymmetry [Aharony, Giombi, Gur-Ari, Jain, Maldacena, Minwalla, Sharma, Shenker, Takimi, Trivedi, Wadia, Yacoby, Yin, Yokoyama, ...]

Đ. Radičević (Stanford)

14 Dec 2015

The planar limit

- Focus on CS-matter theories obtained by gauging a U(N) symmetry of vector-like CFTs (free boson/fermion, Wilson-Fisher, Gross-Neveu) and adding a CS term at level k
- Planar limit: $N, k \to \infty$ with fixed 't Hooft coupling $\lambda = \frac{N}{k}$
- Important technicality: gluon loops are regulated using dimensional reduction [Chen, Semenoff, Wu] $\implies |\lambda| \le 1$
- $\lambda = 0$: free theory (singlet sectors of vector models) $\lambda \to \pm 1$: (almost) pure CS

Phenomenology

- At all λ , it is possible to calculate thermal partition functions, correlators, β -functions, the low-lying spectrum, etc.
- 3D bosonization

regular boson \leftrightarrow GN fermion regular fermion \leftrightarrow WF boson

$$\frac{N_F}{\lambda_F} = -\frac{N_B}{\lambda_B}$$
$$|\lambda_B| + |\lambda_F| = 1$$

Both sides of the duality map to the same gravity theory [e.g. Chang, Minwalla, Sharma, Yin]

D. Radičević (Stanford)

14 Dec 2015

The spectrum of CS-matter theories

- Low-dimension operators are higher-spin currents organized in a rigid structure [Maldacena, Zhiboedov] what else is there?
- \bullet Two types of operators with dimensions of order N or higher
 - Baryons $B = \epsilon^{i_1 \dots i_N} \psi_{i_1} \dots \psi_{i_N}$, naïvely $\Delta_B = N$ [Shenker, Yin]
 - Disorder operators ("monopoles") \mathcal{O} unit magnetic flux + Fermi sea of matter, naïvely $\Delta_{\mathcal{O}} = \frac{2}{3}k^{3/2}$ [Pufu]

D. Radičević (Stanford)

14 Dec 2015

The spectrum of CS-matter theories

- Low-dimension operators are higher-spin currents organized in a rigid structure [Maldacena, Zhiboedov] what else is there?
- \bullet Two types of operators with dimensions of order N or higher
 - Baryons $B = \epsilon^{i_1 \dots i_N} \psi_{i_1} \dots \psi_{i_N}$, naïvely $\Delta_B = N$ [Shenker, Yin]
 - Disorder operators ("monopoles") \mathcal{O} unit magnetic flux + Fermi sea of matter, naïvely $\Delta_{\mathcal{O}} = \frac{2}{3}k^{3/2}$ [Pufu]

Understanding this is the topic of this talk!

D. Radičević (Stanford)

14 Dec 2015

Disorder operators in 3D gauge theories

• Any gauge theory on \mathbb{R}^3 can have local operators $\mathcal{O}(x)$ whose insertion in the path integral makes the field strength vev obey

$$\int_{S^2(x)} \langle F \rangle = 4\pi q_i H^i$$
 [Borokhov, Kapustin, Wu]

 $S^{2}(x)$: a sphere enclosing the insertion point x

 H^i : Cartan generators

q_i: discrete GNO charges [Goddard, Nuyts, Olive]

- Topological charge $q = \sum_i q_i$
- Despite the lack of topological protection, operators with different GNO charges are often independent [Dyer, Mezei, Pufu]

Disorder operators in 3D gauge theories

- In conformal theories, disorder operators correspond to "monopole states" on the spatial S^2 in radial quantization
- On a unit sphere, monopoles are gauge-equivalent to

$$\mathcal{A}(\theta,\phi) = q_i H^i \begin{cases} (1-\cos\theta) d\phi, & \theta \le \frac{\pi}{2}, \\ (-1-\cos\theta) d\phi, & \theta \ge \frac{\pi}{2}. \end{cases}$$
 [Wu, Yang]

• What are their energies?

D. Radičević (Stanford)

14 Dec 2015

Plan of attack

- Energies of lightest monopoles in a given GNO class can be found by computing the thermal partition function of states with definite flux through the S^2 , and then taking $T \to 0$ to get $Z = e^{-\Delta_{\mathcal{O}}/T}$
- Aforementioned technical developments allow us to compute this partition function at high temperatures
- Analyticity allows us to extend these results to low-temperature regimes and read off $\Delta_{\mathcal{O}}$

D. Radičević (Stanford)

14 Dec 2015

Plan of attack

- Energies of lightest monopoles in a given GNO class can be found by computing the thermal partition function of states with definite flux through the S^2 , and then taking $T \to 0$ to get $Z = e^{-\Delta_{\mathcal{O}}/T}$
- Aforementioned technical developments allow us to compute this partition function at high temperatures
- Analyticity allows us to extend these results to low-temperature regimes and read off $\Delta_{\mathcal{O}}$

D. Radičević (Stanford)

14 Dec 2015

Chern-Simons-fermions

• We compute the thermal partition function at temperature T on a unit sphere with $\mathbf{q} = (q_1, \dots, q_N)$ units of magnetic flux:

$$Z_{\mathbf{q}} = \int [\mathrm{d}A\,\mathrm{d}\psi] \ e^{-S[\mathcal{A}+A,\,\psi]}$$

$$S = \frac{ik}{4\pi} \int_{S^1 \times S^2} d^3x \, \epsilon^{\mu\nu\rho} \operatorname{Tr} \left(A_{\mu} \partial_{\nu} A_{\rho} + \frac{2}{3} A_{\mu} A_{\nu} A_{\rho} \right) + \int_{S^1 \times S^2} d^3x \, \bar{\psi}_i \gamma^{\mu} D_{\mu} \psi_i$$

$$D_{\mu} = \partial_{\mu} + A_{\mu}, \quad \operatorname{Tr}(T^a T^b) = -\frac{1}{2} \delta^{ab}, \quad k - \frac{1}{2} \in \mathbb{Z}, \quad |k| > N$$

D. Radičević (Stanford)

14 Dec 2015

The high temperature expansion

- At $T \gg 1$, fermions develop large thermal masses and become "confined" into cells of size 1/T
- High-energy degrees of freedom (energy scales above T) effectively live on flat space and can be integrated using light-cone gauge [Giombi, Minwalla, Prakash, Trivedi, Wadia, Yin]
- This generates an effective potential for the single gauge-invariant, low-energy degree of freedom, the **Polyakov loop** $U = \exp \oint_{S^1} A_3$

$$Z_{\mathbf{q}} = \int dU \ \Delta(U) \ e^{-S_{CS}[\mathcal{A}] - 4\pi T^2 \left[v_0(U, \mathcal{A}) + \frac{1}{T^2} v_2(U, \mathcal{A}) + \dots \right]}$$

D. Radičević (Stanford)

14 Dec 2015

Technical remarks

- To integrate out the low-energy degrees of freedom, we use the maximal torus gauge [Blau, Thompson]
 - $\partial_3 A_3 = 0$ ("temporal" gauge)
 - $U = e^{i\alpha_i H^i}$ (the Polyakov loop is diagonal)
 - $\partial_i A_i = 0$ (Coulomb gauge)
- Diagonalizing the background \mathcal{A} to the Wu-Yang form spends some gauge symmetry and "breaks" the gauge group to $U(N_1) \times U(N_2) \times \ldots \times U(N_p)$
- Fixing to maximal torus gauge and integrating out the remaining (non-dynamical) CS fields discretizes some α 's to multiples of $2\pi/k$ and also gives the Vandermonde $\Delta(U)$ of the broken gauge group

The matrix model

- Take $\mathbf{q} = (q, 0, \dots, 0)$; broken gauge group is $U(1) \times U(N-1)$
- In this background, $S_{\rm CS}[\mathcal{A}] = -ik_0\alpha_1$ [e.g. Kim]
- Yang-Mills-regularized (bare) coupling $k_0 = k N \operatorname{sgn} k$ [Aharony]
- Integrating over eigenvalues $\alpha_2, \ldots, \alpha_N$ gives the partition function of the U(N-1) theory without fluxes. The integral over α_1 is the only one that depends on q:

$$Z_{\mathbf{q}} = Z_0 \int_0^{2\pi} d\alpha_1 \ e^{ik_0 q\alpha_1 - 4\pi T^2 v_0(\alpha_1)}$$

D. Radičević (Stanford)

14 Dec 2015

The single eigenvalue integral

$$Z_{\mathbf{q}} = Z_0 \int_0^{2\pi} d\alpha_1 \ e^{ik_0 q\alpha_1 - 4T^2 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^3} \cos(n\alpha_1)}$$

- Z_0 is the contribution of single-trace operators (higher-spin currents) on top of a monopole
- The integral over α_1 counts all ways to place qk_0 fermions in $4\pi T^2$ places; this is the sum over all possible monopoles of given GNO flux \mathbf{q}
- The lowest energy monopole is found at the complex saddle when $k_0 \sim T^2 \gg 1$ and with $T^2/k_0 \to 0$
- At the saddle point, $Z_{\mathbf{q}} = Z_0 e^{-\frac{2}{3}|qk_0|^{3/2}/T}$ so $\Delta_{\mathcal{O}} = \frac{2}{3}|qk_0|^{3/2}$

D. Radičević (Stanford)

14 Dec 2015

Comments

- We take $q \ll T^2$ so that matter does not feel the background flux
- Taking $T^2 \ll k_0$ places us below all phase transitions, in a region analytically connected to T=0; we expect our result to hold at low temperatures
- Sanity check: without fluxes, $T^2/k_0 \to 0$ reproduces the free energy of the singlet vector model [Jain et al]
- Another sanity check: at $\lambda \to 0$ and q = 1, we have $qk_0 = k$ and our result matches the naïve dimension [Pufu]

(ロ) (部) (差) (差) (差) (9)(

D. Radičević (Stanford)

14 Dec 2015

Protected dimensions

- Dimensions of (lightest) disorder operators are the same at all λ
- Is there a symmetry that protects them, like the higher-spin symmetry protects single-trace operators?
- Are these dimensions constrained by single-trace operators, like baryon dimensions must be?

Recall:
$$\bar{B}B \sim (\epsilon \bar{\psi}^N) (\epsilon \psi^N) \sim \sum (\bar{\psi}\psi)^N$$

→ this drives the GWW transition [Shenker, Yin]

D. Radičević (Stanford)

14 Dec 2015

3D bosonization duality

- Fermionic disorder operators and bosonic baryons have dimensions that map under bosonization, $\frac{2}{3}N^{3/2} \leftrightarrow \frac{2}{3}|k_0|^{3/2}$
- Higher spin currents are dual to each other; are baryons dual to monopoles?
- Yes! This calculation, and the flow to level-rank duality of pure CS, suggest that the mapping between theories with groups $U(N)_{k,k'} \equiv (SU(N)_k \times U(1)_{k'})/\mathbb{Z}_N$ (with $\frac{1}{2}$ added to the level in fermionic theories) is

$$SU(N)_{k_0} \leftrightarrow U(k_0)_{-N,-N}$$

$$U(N)_{k_0,k_0} \leftrightarrow SU(k_0)_{-N} \qquad \text{[Aharony]}$$

$$U(N)_{k_0,k_0+N} \leftrightarrow U(k_0)_{-N,-N-k_0} \dots$$

D. Radičević (Stanford)

14 Dec 2015

Future work

Open questions

- Baryon dimensions by computing the partition function at a fixed flavor charge
- Bosonic (and susy) operators difficult due to possible condensation
- Heavy particles in higher-spin gravity?
- Lessons for supersymmetric dualities?

Thank you!

D. Radičević (Stanford)

14 Dec 2015

18 / 18

Pirsa: 15120037 Page 21/21