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Abstract: <p>In this talk | will sketch the relation between unitary representations of the BMS3 group and three-dimensional, asymptotically flat
gravity. More precisely, after giving an exact definition of the BMS group in three dimensions, | will argue that its unitary representations are
classified by orbits of CFT stress tensors under conformal transformations. These stress tensors, in turn, can be interpreted as Bondi mass aspects for
asymptotically flat metrics. | will also show how one can compute characters of the BMS3 group, which coincide with suitable gravitational
one-loop partition functions</p>
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MOTIVATION

Flat space-time
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MOTIVATION

Flat space-time
» Symmetries : Poincaré ~ Lorentz < Translations

But space-time is not flat...
» “Asymptotically flat” space-times
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MOTIVATION

Flat space-time
» Symmetries : Poincaré ~ Lorentz < Translations

But space-time is not flat...
» “Asymptotically flat” space-times

» Symmetries : BMS ~ Superrotations < Supertranslations
[Bondi et al. 1962, Barnich et al. 2009 ]
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PLAN OF THE TALK

1. Unitary reps of semi-direct products
2. Representations of BMS3

3. Relation to gravity
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PLAN OF THE TALK

1. Unitary reps of semi-direct products
2. Representations of BMS;3

3. Relation to gravity
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1. Unitary representations
of semi-direct products
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SEMI-DIRECT PRODUCTS

P =S0(2,1) x R®

» Elements of P = pairs ( f, «)
~ Group operation (f, ) - (g,8) = (f - & o +f - )
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SEMI-DIRECT PRODUCTS

P =S0(2,1) x R®

» Elements of P = pairs ( f, «)

» Group operation (f, o) - (g,8) = (f - & a+f - 5)
» Pis a semi-direct product:

P=GKxs; A
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SEMI-DIRECT PRODUCTS

UIRREPs of P = SO(2,1) x R3 ? [Wigner 1939]
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SEMI-DIRECT PRODUCTS

UIRREPSOf P=G x,A? [Wigner 1939]
» Start with Abelian group A
» UIRREPs are one-dimensional :
a— et P, p €A

> p = momentum
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SEMI-DIRECT PRODUCTS

UIRREPSOf P=G x,A?
» Start with Abelian group A
» UIRREPs are one-dimensional :

v . @l (p.w)’

> p = momentum

A UIRREP of P contains many momenta
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Relation to gravity
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Conclusion
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[Wigner 1939]
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ORBITS

Let7 = UIRREPOf G x, A
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ORBITS

Let 7 = UIRREP of G x, A in a Hilbert space #, with
T[(e, x)] - e onV < H.
Pick f € G.
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ORBITS

Let 7 = UIRREP of G x, A in a Hilbert space #, with
T [(e, )] ’v = P onV < H.
Pick f € G.

Then, =1V < 71 st
BIC )[R
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ORBITS

Let 7 = UIRREP of G x, A in a Hilbert space #, with
’7'[(@,0:)]’V = e onV < H.
Pick f € G.

Then, 3V < # s.t.
AC | — ot

Define (f - p, ) = (p, op1c0)

» Orbitofp: O, ={f-pl|f G}
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UNITARY REPS

Let’s build UIRREPs of P!
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UNITARY REPS

Let’s build UIRREPs of P!
» Pick an orbit O,
» Let H = space of wavefunctions ¥ : O, — C: g+ ¥(q)
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UNITARY REPS

Let’s build UIRREPs of P!
» Pick an orbit O,
» Let H = space of wavefunctions ¥ : O, — C: g+ ¥(q)

» Define (7 [(f,®)]¥) (q) = e @MW (f~1.q)
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UNITARY REPS

Let’s build UIRREPs of P!
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Pick an orbit O,
Let H = space of wavefunctions ¥ : O, — C: g +— ¥(q)

Define (T[(f, )]¥) (q) = /@)W (f1 . q)
This is an IRREP of P!

Conclusion
00O
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UNITARY REPS

Let’s build UIRREPs of P!
» Pick an orbit O,
Let H = space of wavefunctions ¥ : O, — C: g +— ¥(q)

|
» Define (7 [(f,@)]¥) (q) = e @MW (f~1.q)
» This is an IRREP of P!

How to make 7 unitary?

» Pick a G-invariant measure p on Oy,

» Scalar product (®|V) = /(9 dp(q) (2(q))" ¥ (q)
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UNITARY REPS

Let’s build UIRREPs of P!

Pick an orbit O,
Let H = space of wavefunctions ¥ : O, — C: g +— ¥(q)

Define (7[(f,®)]¥) (q) = T W (f~1.q)
This is an IRREP of P!

How to make 7 unitary?

Pick a G-invariant measure p on Oy,

Scalar product (®|¥) = /(9 du(q) (®(gq))" ¥(q)

All UIRREPs of P are of this form ! [Mackey ~1950]
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UNITARY REPS

Let’s build UIRREPs of P!

Pick an orbit O,
Let H = space of wavefunctions ¥ : O, — C: g+ ¥(q)

Define (7T[(f,®)]¥) (q) = e T W (f~1.q)
This is an IRREP of P!

How to make 7 unitary?

Pick a G-invariant measure p on Oy

Scalar product (®|¥) = /(9 du(q) (®(gq))" ¥(q)

All UIRREPs of P are of this form ! [Mackey ~1950]
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DEFINITION OF BMSj3

BMS;3; = Aspt. symmetry group of 3D aspt. flat space-times
[ Ashtekar et al. 1996, Barnich et al. 2009]
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DEFINITION OF BMSj3

BMS;3 = Aspt. symmetry group of 3D aspt. flat space-times
[ Ashtekar et al. 1996, Barnich et al. 2009]
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DEFINITION OF BMSj3

BMS;3 = Aspt. symmetry group of 3D aspt. flat space-times
[ Ashtekar et al. 1996, Barnich et al. 2009]

» Aspt. flat metrics in 3D :
ds2 "7 —du? — 2dudr + r?dp? + subleading terms

» Aspt. symmetry transformations :

e = f(p), uw— [u+a(p)] f(e)
vd 0

Superrotations Supertranslations
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DEFINITION OF BMSj3

BMS;3; = Aspt. symmetry group of 3D aspt. flat space-times
[ Ashtekar et al. 1996, Barnich et al. 2009]

» Aspt. flat metrics in 3D :
ds2 T —du? — 2dudr + r?dp? + subleading terms

» Aspt. symmetry transformations :

e f(p), uw— [u+alp)] f(e)
vd g

Superrotations Supertranslations

» Infinite-dimensional extension of Poincaré
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DEFINITION OF BMSj3

BMS3; = Aspt. symmetry group of 3D aspt. flat space-times
[ Ashtekar et al. 1996, Barnich et al. 2009]

» Aspt. flat metrics in 3D :
ds2 T —du? — 2dudr + r?dp? + subleading terms

» Aspt. symmetry transformations :

e f(p), uw— [u+alp)] f(e)
W £

Superrotations Supertranslations

» Infinite-dimensional extension of Poincaré
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DEFINITION OF BMSj3

BMS; transformations :

@ — f(p), u—[u+ale)] (e
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DEFINITION OF BMSj3

BMS; transformations :

p— flp), uw—[u+a(e)] f(¥)

» Elements of BMS3 = pairs (f, «)
» Group operation :

(fra)-(8.8) = (fog.a+arB), orBl,,, = F(£)B()
o = tsf. law of vector fields under diffeos !

> a=a(p)s

\J

BMS; = Diff(S') x Vect(S!) [Barnich & BO 2014]
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Unitary reps of BMSs;...
» What should we expect ?

Poincaré : exact space-time symmetry
» UIRREP = Hpoinc = Particle

BMS; aspt. space-time symmetry
» UIRREP = Hpms = Particle dressed w/ soft gravitons

= BMS; particle

> Hpems = Hroine @ Hsoft grav
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ORBITS AND UNITARY REPS

Unitary reps of BMS3 = Diff(S!) x Vect(S!) ?
Gx A
» Vect(S!)* = space of supermomenta p(y) :

= L (@
(8,0 = £ [dep@)a(e)

p(p) = Z Pnics ¢

nez
> po = energy

Pirsa: 15120022 Page 33/49



Unitary reps of semi-direct products Unitary reps of BMS3 Relation to gravity Conclusion
00000 SISIeTeT Yoto! 0000 00

ORBITS AND UNITARY REPS

Fix a supermomentum p(y)
» Find all f - p, where f € Diff(S').

f -p, ) = (p, Uf—la>

1
> Pl = F(2))2 [P(ﬁﬁ) + 1C—2 {f:tﬁ}]

» p(p) ~ CFT stress tensor on S!
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Relation to gravity

Conclusion
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ORBITS AND UNITARY REPS

Fix a supermomentum p(y)
» Find all f - p, where f € Diff(S').

f-p,a) = (p, Jf—1a>

i | ¢
» p(p) ~ CFT stress tensor on S!

» BMS; orbits

orbits of stress tensors under conf. tsfs !
coadjoint orbits of the Virasoro group
[Lazutkin & Pankratova 1975, Witten 1988, Balog et al. 1997
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1
f Pl = Gz [P0+ 13 U593

» O, = {f - p|f € Diff(§') } — complicated !

» Let’s make it simple :
1. Constant supermomentum p(y) = po ( ~ particle at rest)
2. Look for stabilizer G,
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1
(f;((p))z [pO =1 é {fa(ro}] == 0

» O, = {f - p|f € Diff(S') } —» complicated !

» Let’s make it simple :
1. Constant supermomentum p(y) = po ( ~ particle at rest)
2. Look for stabilizer G,

- O, == Diff(S') /G,
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BMS; orbits = coadjoint orbits of Virasoro group :

Po

Genericpg: O, = Diff(S!)/S?
0
po = —n?c/24 : O, = Diff(S!) /SO™ (2, 1)
n =1
n =2
n=J3
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BMS3 orbits = coadjoint orbits of Virasoro group :

Po
I Generic pp : O, = Diff(s')/s!
0
po = —n?c/24 : O, = Diff(S') /SO (2, 1)
n =1
» What else ?
, nzc
S » Perturbations ~ 51 + dp(p)
» 5p = 3-momentum under SO (2, 1)
- = » “Poincaré orbits for each n” !
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SUPERMOMENTUM & BONDI MASS

On-shell aspt. flat metrics
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SUPERMOMENTUM & BONDI MASS

On-shell aspt. flat metrics : [Barnich & Troessaert 2010]
ds? = 8G p(yp)du? — 2dudr + r*dp?® + - - -

p(y) = Bondi mass aspect
» Action of BMS; on p(yp) :

f‘be(go):f%[p"‘é{fH@}] with ¢ =3/G
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CHARACTERS & PARTITION FUNCTIONS

BMS; particle = Particle @ Soft gravitons
» Vacuum BMSj; character <+ graviton partition function ?

Characters of unitary reps of semi-direct products :
» Orbit O,
» Character :

X[(f, a)] = Tr (T[(f, @)]) = /O dpa(q) e @)
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CHARACTERS & PARTITION FUNCTIONS

Massive BMS3 particle
> P = Po
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CHARACTERS & PARTITION FUNCTIONS

Massive BMS3 particle
» p = po — O, = Diff(5!)/S?

Take f(p) = ¢ + 6 (rotation by 6)
» Character :

x|[(rotg, )] = / du(q) 6(q, roty - q) e’ {3
. O}J

(rote - 9) () = q(p — 0)
» The integral “localizes” to a point !
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CHARACTERS & PARTITION FUNCTIONS

1

:"g I]_ _ ein(é’—i—ie)lz

XP()[(rOte, a)] - giP{)d{)

[BO 2015]
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CHARACTERS & PARTITION FUNCTIONS

1
- S Bc/24
Xvac [(I‘Otg, (X)] T € “+ oo |1 o 6511(9+i€) |2 [BO 201 5]
n=2
» Omne-loop partition fct of gravitons on thermal flat space !

[Barnich, Gonzalez, Maloney, BO 2015]
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CONCLUSION

BMS3; = Superrotations x Supertranslations
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CONCLUSION

BMS; = Superrotations x Supertranslations
» “Supermomenta”

» UIRREPs classified by supermomentum orbits
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N Thank you !

I 3 6°— M*>0
o
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