Title: Brane webs, 5d gauge theories and 6d N=(1,0) SCFT's

Date: Nov 24, 2015 02:00 PM

URL: http://pirsa.org/15110098

Abstract: Some 5d gauge theories have a 6d N=(1,0) SCFT as their UV completion. Given such 5d gauge theory we desire to determine its 6d UV completion. In this talk, I will present a method to do this for 5d gauge theories that can be engineered in string theory by brane webs. This can then be applied to study compactification of 6d N=(1,0) SCFT's on a torus.

Pirsa: 15110098 Page 1/26

Motivation

- Investigate the relation between 5d N=1 gauge theories and 6d N= (1,0) SCFT's.
- A 5d N=1 gauge theory sometimes has 6d N= (1,0) SCFT as its UV completion.
- Would like to determine the 6d N= (1,0) SCFT UV completion.
- The 5d theory can then be used to study the 6d SCFT.
- This has interesting implications on the compactification of the 6d SCFT to 4d on a torus.

2

Pirsa: 15110098 Page 2/26

Outline

Page 3/26

1. Introduction

- Generalities of 5d gauge theories and their description using brane webs
- 6d N= (1,0) SCFT's and their description using brane systems
- 5d gauge theories with a 6d SCFT UV completion
- 2. Determining the 6d SCFT UV completion using brane webs
- 3. Implication for the compactification of 6d SCFT's on a torus
- 4. Conclusions

3

1. Introduction: 5d gauge theories

- 5d gauge theories are non-renormalizable.
- Yet, in the N=1 SUSY case a UV fixed point may exist.
- 5d gauge theory generated from a 5d SCFT by a mass deformation associated with the coupling constant.
- Exhibit interesting non-perturbative properties such as enhancement of symmetry.

[Seiberg, 1996]

Enhancement of symmetry

- In 5d every simple non-abelian gauge group has a topologically conserved U(1) current: $J \sim *Tr F \wedge F$.
- This current is carried by instanton particles.
- These can provide additional conserved currents leading to an enhancement of symmetry.
- A classic example is an $SU(2) + N_F F$, with $N_F < 8$, where instantons enhance the classical $U(1) \times SO(2N_F)$ global symmetry to E_{N_F+1} [Seiberg, 1996].

Pirsa: 15110098 Page 5/26

5-Brane webs

- Convenient way to represent 5d gauge theories.
- Parameters represented by position of external branes.
- Moduli represented by moving internal branes.
- Fixed point realized when all the 5-branes intersect at a point.

[Aharony, Hanany, 1997] [Aharony, Hanany, Kol, 1997]

6

Pirsa: 15110098 Page 6/26

6d N = (1,0) SCFT's

- Made from: hypermultiplets, vector multiplets and tensor multiplets.
- Tensor multiplet has a self-dual tensor and real scalar as its bosonic degrees of freedom.
- Scalar can acquire a vev leading to a moduli space called the tensor branch.

Pirsa: 15110098 Page 7/26

Examples of 6d N=(1,0) SCFT's

- Rank N E-string theories: made of N tensor multiplets with an E_8 global symmetry. Described in string theory by N M5-branes near an M9-plane [Ganor, Hanany, 1996].
- 6d gauge theories are non-renormalizable, but some have a SCFT UV completion. This requires adding tensor multiplet with the coupling constant identified with the scalar vev [Seiberg, 1997].
- 6d gauge theories suffer from gauge anomalies whose cancellation usually requires adding a tensor multiplet. These also constrain the matter content.

Pirsa: 15110098 Page 8/26

Brane configurations for 6d SCFT's

- Consider the system made from an $O8^-$ -plane and 2N D6 branes partitioned by an NS5-brane. Gives an USp(2N) + (2N + 8)F gauge theory on the D6 branes [Hanany, Zaffarony, 1998].
- D6-brane charge conservation leads to anomaly cancelation condition.
- Motion of the NS5-brane is identified with the tensor branch.
- Adding more NS5-branes leads to a *USp X SU ... X SU* quiver.
- Adding an NS5-brane stuck on the $O8^-$ -plane changes the first group to SU(2N) + 1AS.
- One can also add D8-branes, leading to additional flavors.

The 6d anomaly polynomial

- Besides gauge anomalies there can also be anomalies involving global currents.
- These include the Lorentz group, the $SU(2)_R$ symmetry and flavor symmetries.
- Conveniently packaged in an 8-form called the anomaly polynomial.
- There are known techniques to calculate it [Ohmori, Shimizu, Tachikawa, Yonekura, 2014].
- For very Higgsable 6d SCFT's compactified on a torus: related to the central charges of the resulting 4d theory [Ohmori, Shimizu, Tachikawa, Yonekura, 2015].

Pirsa: 15110098 Page 10/26

5d gauge theories with a 6d SCFT UV completion

- Some 5d N=1 gauge theories have 6d N= (1,0) SCFT's as their UV completion.
- 5d gauge theory generated from a 6d SCFT by a mass deformation associated with compactification of the 6d SCFT on a circle of radius R.
- 5d gauge theory has a space of relevant deformations: $\frac{1}{R}$ and holonomies of background gauge fields.
- By taking all these to zero one approaches the 6d SCFT.

5d gauge theories with a 6d SCFT UV completion: examples

- Maximally supersymmetric Yang-Mills and the 6d (2,0) theory [Douglas, 2011][Lambert, Papageorgakis, Schmidt-Sommerfeld, 2011].
- SU(2)+8F and the rank 1 E-string theory [Ganor, Morrison, Seiberg, 1997].
- Apparent from the string theory construction: a D4-brane immersed in an $08^- + 8D8$ -branes.
- Another hint from the gauge theory perspective: instantons lead to an enhanced affine $E_8^{(1)}$ global symmetry.

12

Pirsa: 15110098 Page 12/26

Example: $SU(N+2)_0 + (2N+8)F$ and the (D_{N+4}, D_{N+4}) conformal matter

[Hayashi, Kim, Lee, Taki, Yagi, 2015]

 (D_{N+4}, D_{N+4}) conformal matter: one dimensional tensor branch leading to 6d gauge theory USp(2N) + (2N + 8)F.

SU(N+2) + (2N+8)F gauge. Has an affine $D_{2N+8}^{(1)}$ global symmetry.

13

2. Determining the 6d SCFT UV completion using brane webs

- Many other 5d gauge theories suspected to lift to 6d.
- With brane web presentations: quivers of SU groups with fundamentals, or with USp or SU+1AS ends.
- We wish to determine the 6d SCFT also for these.
- The strategy is to first generalize the previous example to a certain class of theories.
- Additional theories can then be determined by connecting them to theories in this class via Higgs branch flows.
- By following the breakings we can determine the 6d SCFT.

Pirsa: 15110098 Page 14/26

Generalization: adding NS5-branes

Higgs branch flow

- Higgs branch flow in the 5d theory described by breaking a 5-brane on a 7brane. This forces several 5-branes to end on the same 7-brane.
- Correspondingly in the 6d theory: breaking a D6-brane on a D8-brane.

Higgs branch flow and quiver tails

- This can be used to map the starting quiver to more general cases.
- Previous construction instruct us to do the same mapping on the 6d SCFT.

A simple example

Pirsa: 15110098 Page 18/26

For what theories can this be applied?

- Appears to be applicable only for linear SU quivers with fundamentals.
- However, the method can still be applied by manipulating the brane web to one related to the previous cases by Higgs branch flows.
- This works for a large class of 5d gauge theories.
- This leads us to conjecture that this can be applied to any 5d gauge theory with a brane web presentation.

Pirsa: 15110098 Page 19/26

- This method can also be used to determine the result of compactifying the 6d SCFT on a torus.
- This can be checked by comparing the central charges with the ones expected from the 6d anomaly polynomial.

Pirsa: 15110098 Page 20/26

Pirsa: 15110098 Page 21/26

Pirsa: 15110098 Page 22/26

• Starting from the brane web for the 5d (N+2)F + SU(N)X ... X SU(N) + (N+1)F quiver gauge theory, we perform a long sequence of 7-brane manipulations consisting of moving 7-branes accompanied by Hanany-Witten transitions.

Pirsa: 15110098 Page 23/26

- After intense 7-brane manipulation we arrive to the web on the left.
 For ease of presentation only the external legs are drawn.
- Right: the associated 4d class S theory.

Pirsa: 15110098 Page 24/26

4. Conclusions

- Some 5d gauge theories have a 6d SCFT UV completion. This 6d SCFT can be determined using Higgs branch flow for 5d gauge theories with a brane web representation.
- This can be used to determine the 4d SCFT resulting from the compactification of the 6d SCFT on a torus.

Open questions

- Can every 5d gauge theory, with an brane web representation, be treated in this way?
- Additional systems: webs in the presence of an O7-plane, O5-plane.

Pirsa: 15110098 Page 25/26

4. Conclusions

- Some 5d gauge theories have a 6d SCFT UV completion. This 6d SCFT can be determined using Higgs branch flow for 5d gauge theories with a brane web representation.
- This can be used to determine the 4d SCFT resulting from the compactification of the 6d SCFT on a torus.

Open questions

- Can every 5d gauge theory, with an brane web representation, be treated in this way?
- Additional systems: webs in the presence of an O7-plane, O5-plane.

Pirsa: 15110098 Page 26/26