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Abstract: <p>While entanglement entropy of ground states usually follows the area law, violations do exist, and it is important to understand their
origin. In 1D they are found to be associated with quantum criticality. Until recently the only established examples of such violation in higher
dimensions are free fermion ground states with Fermi surfaces, where it is found that the area law is enhanced by a logarithmic factor. In Ref. [1],
we use multi-dimensional bosonization to provide a simple derivation of this result, and show that the logarithimic factor has a 1D origin. More
importantly the bosonization technique allows us to take into account the Fermi liquid interactions, and obtain the leading scaling behavior of the
entanglement entropy of Fermi liquids. The central result of our work is that Fermi liquid interactions do not alter the leading scaling behavior of the
entanglement entropy, and the logarithmic enhancement of area law is a robust property of the Fermi liquid phase. In sharp contrast to the fermioic
systems with Fermi surfaces, quantum critical (or gapless) bosonic systems do not violate the area law above 1D (except for the case discussed
below). The fundamental difference lies in the fact that gapless excitations live near a single point (usually origin of momentum space) in such
bosonic systems, while they live around an (extended) Fermi surface in Fermi liquids. In Ref. [2], we studied entanglement properties of some
specific examples of the so called Bose metal states, in which bosons neither condense (and become a superfluid) nor localize (and</p>

<p>insulate) at T=0. The system supports gapless excitations around " Bose surfaces’, instead of isolated points in momentum space. We showed
that similar to free Fermi gas and Fermi liquids, these states violate the entanglement area law in alogarithmic fashion. Compared to ground states,
much less is known concretely about entanglement in</p>

<p>(highly) excited states. Going back to free fermion systems, in [3] we show that there exists a duality relation between ground and excited states,
and the area law obeyed by ground state turns into a volume law for excited states, something that is widely expected but very hard to prove. Most
importantly, we find in appropriate limits the reduced density matrix of a subsystem takes the form of thermal density matrix, providing an explicit
example of the eigenstate thermalization hypothesis. Our work [3] explicitly demonstrates how statistical physics emerges from entanglement in a
single eigenstate.</p>

<p> </p>

<p>[1] Entanglement Entropy of Fermi Liquids via Multi-dimensional Bosonization, Wenxin Ding, Alexander Seidel, Kun Yang, Phys. Rev. X
2,</p>

<p>011012 (2012).</p>
<p> </p>
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Summary of Results

Ground state EE mostly obeys area law in high D, even in critical
systems; free Fermi gas is the only known example that violates area
law logarithmically, until recently.

We use high-D bosonization to show that interacting fermions in the
Fermi liquid phase, EE violates area law in a manner identical to free
Fermi gas; super-criticality (W. Ding, A. Seidel and KY, PRX 12).

We find a similar area-law violation in Bose liquids with Bose
surfaces (H.-H. Lai, KY and N. Bonesteel, PRL 13).

Shape of these critical surfaces may be determined by inspecting the
coefficients of the logarithm (H.-H. Lai and KY, arXiv 15).

EE of highly excited states (with finite excitation energy density) are
expected to follow volume law, but very few explicit results available.
We find it 1s dual to ground state area law, and of the same origin in
free fermion systems. We further show that thermalization emerges
under appropriate conditions (H.-H. Lai and KY, PRB 15).
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Perhaps statistical mechanics and
thermal entropy emerge from
entanglement in a single eigenstate!
Free fermion system an example of this

Eigenstate Thermalization Hypothesis.
(H.-H. Lai and KY, PRB 15)
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Entanglement entropy

Reduced density matrix

(04) =Tr paOa

py=11p
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Entanglement entropy

Reduced density matrix

<01> — /)‘,10,1

p,=11p
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Entanglement entropy as characteristic of phases of matter

/ - Cf. black hole

R L entropy

Typically: Sy oc LP~1 o surface area

Examples : Ground states of gapped local Hamiltonians
Most gapless Hamiltonians
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Therefore Characterization of phases usually focuses
on sub dominant terms

Topologically orderad phases in D=2

Sh = all— log D

Example

total quantum dimens.on

In fact conventional ordering can also g1ve rise to non-t
law (as much as logarithmic N: e.g.

leading correction (o area
)&: W. Ding and KY PRA 0%

Ding. N. Bonesteel and KY. PRA(
r 11;: Melko + co-w orkers 11 and 15.

Metlitski + Grove
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Known Examples of Area Law Violation

Quantum Critical Points (QCPs) in 1-Dimensional
onf )

Asymptotic behavior of entanglement entropy for JCPs
S.=(c/3)log L +

Random Singlet and related random QCPs (G fael and J Moore PR

N Bonesteel and KY PRL 07

Specific Example 1D fermions (

fermionic wavefunction approach fc Jin & Korepin

tion and calculate
dy. 2004 both

L] free fermions
bosonic approach bosont anglement ¢
bosonic theory (Calabrese nd massive
calculation are discussed )

Interaction can be includedn th

scaling behavior of the entanglement e
e Fermions with Fermi Surface in D-Dimensions
2006)

We: Ghoev & Klch

poroach. and it does NOT change the

Fre
Scaling behavior of the entanglement entropy (Wollk. -

A '\1’1} :lxi'.:!.
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Known Examples of Area Law Violation

Quantum Critical Points (QCPs) in1-Dimensional Systems
Asymptotic behavior of entanglement entropy for conformal QCPs:

Holzhey, Larsen and Wilczek (94) SA=(CI3) log L + const.

Random Singlet and related random QCPs (G. Refael and J. Moore PRL 04;
N. Bonesteel and KY PRL 07; ...)
Specific Example: 1D fermions (c=1 CFT)

= fermionic wavefunction approach for free fermions (Jin & Korepin, 2004, ...)

= bosonic approach: bosonization and calculate the entanglement entropy of the
bosonic theory (Calabrese & Cardy, 2004, both CFT and massive boson field
calculation are discussed.)

Interaction can be included in this approach, and it does NOT change the
scaling behavior of the entanglement entropy!

Free Fermions with Fermi Surface in D-Dimensions
Scaling behavior of the entanglement entropy (Wolf, 2006; Gioev & Klich, 2006)

Sysox LP1llogL

Page 11/51



Pirsa: 15110085

R

Therefore : Characterization of phases usually focuses
on sub dominant terms.

Example : Topologically ordered phases in D=2:
= . Kitaev, Preskill 05
‘5 g — (}‘L e l().{-’; D Levin, Wen 05

A

“total quantum dimension”
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Entanglement entropy as characteristic of phases of matter

/ : Cf. black hole

L entropy

Typically: Sy oc L1 o surface area

Examples : Ground states of gapped local Hamiltonians
Most gapless Hamiltonians
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Known Examples of Area Law Violation

Quantum Critical Points (QCPs) in1-Dimensional Systems
« Asymptotic behavior of entanglement entropy for conformal QCPs:

Holzhey, Larsen and Wilczek (94): SA=(CI3) log L + const.

« Random Singlet and related random QCPs (G. Refael and J. Moore PRL 04,
N. Bonesteel and KY PRL 07; ...)
» Specific Example: 1D fermions (c=1 CFT)
= fermionic wavefunction approach for free fermions (Jin & Korepin, 2004, ...)

= bosonic approach: bosonization and calculate the entanglement entropy of the
bosonic theory (Calabrese & Cardy, 2004, both CFT and massive boson field
calculation are discussed.)

Interaction can be included in this approach, and it does NOT change the
scaling behavior of the entanglement entropy!

Free Fermions with FermiSurface in D-Dimensions
« Scaling behavior of the entanglement entropy (Wolf, 2006; Gioev & Klich, 2006)

Sysox LP1llogL
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A More Accurate Formula

s
: : Iy
B e

| 1 log
SaA=— 05 -1 / / |dY g - dXg|
l) )A JoT

)_
LL 1 log L

Gioey, Klich 06, using Widom’s conjecture
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Known Examples of Area Law Violation

Quantum Critical Points (QCPs) in1-Dimensional

Asymptotic behawvior of entanglement entropy for conform 1l QCPs

S,=(c/3) log L + const.

Random Singlet and related random QCF Moore PR

N Bonesteel and KY PRL 07 )

Specific Example 1D fermions (e=1 CFT)

« fermionic wavefunction approach for free fermiona (Jin & Korepin

« bosonic approach bosonzation and caleul anglement ¢ y of the
bosonic theory (Calabrese 2004 both nd massive boson field

calculation are discussed )

Interaction can be include approach, and it does NOT change the

scaling behavior of the entanglement entropy’

Free Fermions with Fermi Surface in D-Dimensions

2006; Groev & Klch

Scaling behavior of the gntanglement entropy (Wol

DA < LP-'log L
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Intuitive Understanding of G&K’s Result via a Toy Model

Decoupled parallel 1D chains
T

,,,,,,,,,,,,,,,,,,,,, T/\

trans

Convex Concave

Fermi surface
Fermi surface

1 T
=

* Each intersection contributes an entanglement entropy of order (1/3)log Z
L is the characteristic length scale of the subsystem. The contribution due to the shape adds
up to of order £~ which is sub-leading.
* Sum over all the chains:

chain

—T _kF - A.

1 | n.-dS 1 e ,
E:—loglx.[ =t = q‘1091><J' f dsS_-ds,
6 = ‘= St pPagpt c lala )
LD*Z
s B il s o
12y ' i
here a”~1 is the density of chains. I is the subsystem A with its volume renormalized to 1.

This is EXACTLY the formula of G&K’s
W. Ding, Ph.D. prospectus 08 and arxiv 09; B. Swingle PRL 10.
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Intuitive Understanding of G&K’s Result via a Toy Model

Decoupled parallel 1D chains

fommon gy

&

(/,/ f] L [\j

Convex oncave

This is EXACTLY the formula of G&K s
W. Ding. Ph.D. prospectus 08 and arxi 09: B. Swingle PRL 10.
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Entanglement entropy & bosonization of the Fermi surface

Convex Concave

Chain density:

. 1 loglL R
S,= Y ——==J, ldS;ds,| 1 [ A) .
) 6 ‘)T):T-—l . ] - :l ) = |N. (]Sk‘
patch pairs il i = X

a N2
1 logL J’ J‘ o
= 12 (‘)T d-1 ¥ é4 ¥ Fernu surface dstdskl GK formulal
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Obviously existence of extended Fermi surface(s) crucial
for area law violation. What about bosonic systems?

Bosons are different; in general they either localize or Bose
condense, resulting in Godstone modes that are gapless
isolated points. No area law violation in these cases.

Emergent Fermi surface possible in spin liquids, leading to area
law violation (Zhang, Grover and Vishwanath 11).
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Simplest Example of Bose Metal.:
Exciton Bose Liquid (EBL)

A. Paramekanti , L. Balents, and M. Fisher, PRB 02 ke
Y

® Low energy theory: Free bosons with an

energy dispersion which vanishes k.

linearly on a locus of points in £-space.

w? ~ |kzky lz

Bose surfaces (where gapless bosonic excitations live) along kx=0, ky=0
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Entanglement Entropy of a Belt Subsystem

Belt subsystem

H Anti-periodic boundary condition

| S ¢ :’Z: ——r—y '(‘9' e "r' (z,y) — 7"(:'-.\'.1;] — 71'{!'.;1'.\') - l'(r..\'._r;-‘\'l
SR [ 1 T 111 Partial Fourier transform along y-axis

| IuummEm G - ..l..:Z,-fw,, & S eikovp

[ S SR SR T T N W W S S - — i \/‘\' y e T \/‘\' y e
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Entanglement Entropy of a Belt Subsystem

Belt subsystem

1t Anti-periodic boundary condition

H :’Z: a8 ’O. B Vi (=) = *‘-lr-.\'.ul == 71"*'-!1'.\') o l'(r'.\'-.uu\'n
S [ T T 111 Partial Fourier transform along y-axis

SR T o ..'..;Z,-f*w,, g 3 ety

[ S S S S S S S S S S W - L \/‘\' B S \/‘\' T

u u
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Simplest Example of Bose Metal.:
Exciton Bose Liquid (EBL)

A. Paramekanti , L. Balents, and M. Fisher, PRB 02 ke
Y

® Low energy theory: Free bosons with an
energy dispersion which vanishes k
xIr
linearly on a locus of points in £-space.

w? ~ |k ky '2

Bose surfaces (where gapless bosonic excitations live) along kx=0, ky=0

e Bosonic harmonic oscillator with factorized dispersion

L : ¢ Aag fx(kx), fy(Ky). Periodic functions which vanish
Zek |f z(kz)f Y (A’” )I linearly as kx, ky—0, such as sin(kx), sin(ky).

| 2 1 4 4 i £
o — 52]{,— + EZ(;_;‘_;A-W- \_;k = 1.:.‘, T | U’; Yk

i ik
short-ranged oscillator coupling!
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Bounds for the Entanglen

—
Ktrong subadditivity inequality (Lieb)

Svstems A and B: / __1 N B B

Incquality:
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Strong subadditnaty mequality

Pirsa: 15110085 Page 26/51




-

o Strong subadditivity inequality Sisassiss

ﬁ,,{;; Pt
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oStrong subadditivity inequality o

e Upper bound:
L,,{EE o
SA+SB 2 SauB + SanB = SanB CET T A
N
= —3 lll(ﬁ_,.f,y) o S.-lﬁB = S[:]
: &

N
e Lower bound: L

4 7

A

I [ I NN ENEEEEEEEEEN

PR EEEEEEEEEEEN
i I . HIENEEEEEEEEEN
I EEEEEEEENEE |
i [ I I
NN EEEEENENENN

S1+ 82+ ... + Stn,1 2 S1vzu...[n,] =S54

=5p 2 E;" InC,

Pirsa: 15110085 Page 28/51



Argument for arbitrary shape

For a non-rectangular system with at least one boundary parallel to a Cartesian axis

Take EBL for example: e +  Strong subadditivity inequality

(translation and mirror)

clone

clone

' \
)
* | clone *
[ 1
i 1
|
|
|

(1) 2) 3)

(H.-H. Lai, KY and N. Bonesteel, PRL 13)
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Argument for arbitrary shape

For a non-rectangular system with at least one boundary parallel to a Cartesian axis

Lattice symmetrie : AR :
Take EBL for example: W +  Strong subadditivity inequality
(translation and mirror)

-
I . -
\
. : .
clone ]
I
g=nt

(1) ) 3)

For subsystems with general smooth boundary: No rigorous argument

clone

clone

*SLur 1S likely to show logarithmic enhancement.
i [ . . . -
Q}:g§ *Results generalisable to similar models with
Arbitrarily arbitrary Bose surfaces.
sliced | (H.-H. Lai, KY and N. Bonesteel, PRL 13)
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Argument for arbitrary shape

For a non-rectangular system with at least one boundary parallel to a Cartesian axis

Lattice symmetrie : e d
Take EBL for example: o ey +  Strong subadditivity inequality
(translation and mirror)

clone

-
I L -
\
I
+ clone ] +
I
=t

(1) 2) 3)

For subsystems with general smooth boundary: No rigorous argument

clone

*SLur 1S likely to show logarithmic enhancement.
1% . guiiicl iy .
@3:9§ *Results generalisable to similar models with
Arbitrarily arbitrary Bose surfaces.
sliced | (H.-H. Lai, KY and N. Bonesteel, PRL 13)
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| Far

Summary Thus |

» Logarithmic violations of area law established for
free boson/harmonic oscillator models with Bose
surfaces.

. Can be viewed as bosonic version of Wolf/Gieov-
K lich results on free fermions; domain of area law
violation in high-D expanded.

. Challenge: Generalize to interacting Systems.
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Simplest Example of Bose Metal:
Exciton Bose Liquid (EBL)

\. Paramekanti . L. Balents, and M. Fisher, PRBOZ

® | ow energy theory: Free bosons with an
encrgy dispersion which vanishes

linearly on a locus of points in A-space

ong £ LN

Dose surfaces (where gapless bosonic excitations live) al
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concave

Harmiltoman

(=}
=
L]
v
o
o

C

15110085
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Add Fermi liquid interactions

5;7 — Yt

e o, | H(0(S: )] = ~F / x| Y (9s0(S:x))’

S
t ) 9s.1Is0(S:x)oro(T: x))
”_ e ST 4
e
Can be diagonalized in terms of new
4 9 .
modes ((S: x)
- Good News: Diagonalized Hamiltonian looks the

same as the non-interacting Hamiltonian

Bad News: Relation between @(S: ) and &(S: x)is very non-

local!

O(S:x)=o(S:x) + /(/yz.f'[s./: x—y)oll:y).
' !

Solution: Make use of the quadratic nature of the bosonized Hamiltonian
without diagonalizing it. Relate entanglement entropy to Green’s function
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Entanglement entropy via replica Green’s function: a roadmap

: . : . 13, . g Zi4
Replica trick: .S4 =—lim ll‘—p’; =~lim—-—2—<
y -~ ¥ ~ n
=:  On -1 0n £

¥

0

-

om-
price: need a mass term

A F e e -
lcng,:——Sjcf )

For quadratic theory:

¥

Solve for G (x, y) on the replica manifold

price: special geometry

U

: : g _1¢
Sp=—lim —e 2 h/e
n—1 On

dm? [ d’z(G™ (z,2)—-nGY) (z,2))
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Entanglement entropy of Fermi liquids

GlS.152.9) = Gol S, 1: 2, 9)
+ / d®2Go(8. S; z, z) X (Z(h._,(/.'r_)e);;’ + _/'1(1.'1‘)('),(')»,-)(;(/.'1‘;.:.,,))

l

Structure at any given order:
-- An intra-patch term, where all patch-indices are identical. This term

is proportional to

log L x Z / dxs, 0(xs, —ys, )|U_,_,.
5

Similar to the zeroth order, and could thus renormalize the leading log(L) term.
However, its coefficient is formally identical to one that would appearina 1D
theory, where we know it must vanish. We checked this in detail at 1* and 2™

order.
-- An inter-patch term which can be shown to be sub-leading in L using scaling

arguments.

log L X area law unrenormalized by interactions!

See W. Ding, A Seidel and KY, PRX 12 for calculational details.
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Determining Shape of Fermi or Bose Surfaces Using Entanglement
(H.-H. Lai and KY, arXiv 15)

- 3
-

cross-section area

T~
N ————

r

The same to the extremum cross-section
obtained in quantum oscillation measurement

L'/ Arrays of 1D chains
: penetrating the critical surface
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(Another) Summary Thus Far

» Entanglement entropy area law widely obeyed by
ground states of local Hamiltonians.

* Violations of area law rare above 1D; requires Fermi
or Bose surfaces. Reasonably well understood.
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(Another) Summary Thus Far

» Entanglement entropy area law widely obeyed by
ground states of local Hamiltonians.

* Violations of area law rare above 1D; requires Fermi
or Bose surfaces. Reasonably well understood.

» Challenge: Highly excited states (with finite
excitation energy density).

« Expectation: entanglement entropy follow volume
law, just like a random state in Hilbert space.

* Problem: Almost no explicit result other than
limited numerics.

irsa: 15110085 Page 40/51



Position-Momentum Duality for
Free Fermion States

Original
System

‘ , Identical

Position Space | Position-Momentum Momentum

R Duality Boues Gccacaiion entanglement spectrum!
. Dual /
System
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Heuristic Derivation of Duality-I

For a Free fermion Hamiltonian: H = Z c;r- hjece
7€

A B=A : : -H,

Reduced density matrix: PA =B (F)(F||=e"

e = Z c}nejgc;g K =n [M‘l — llv,;xv_.‘]
JLEA
Mj¢ = (F|clce| F)

M;;: Two-point fermion Green’s function defined in subsystem A.

In free fermion systems: A given matrix M

Uniquely determine the entanglement spectrum!
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Duality between GS and ES

Ground State of Original system
; |4
e Number of pockets: "= 74
a"s s mEsE A, L
s wun smweg/' Ground State ) In L
soreats —— | B Sp~nlglnLo~V—33 o
e e w s | Original System L[] V—oo»LE,
SHEH
\ / J The entanglement entropy scales
Position Space | Position-Momentum|  Momentum with the system volume
Partition Duality Space Occupation
"__'_ﬂ,_,__h_\‘ Highly Excited State in Dual system
{ Excited State ) g ]
. Sy From the position-momentum duality, the
Dual system entanglement entropy of the a highly excited
state exhibits volume instead of area law.

The entanglement entropic area law for free fermion ground states
and the volume law for highly excited states are of the same origin!
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Eigenstate thermalization for a
typical excited state

 Tymecal ighly excited state

sesspsssas
R

A 1 ik
My = '\r‘:r,! A = : :‘__‘”h"

Ty

-
k

k_

e = (cho)
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Eigenstate thermalization for a
typical excited state

e Typical highly excited state

*0 090000000

oS 000009000
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Mj, = c c; Zn g iorsees

Coarse-Graiming Process

» At thermodynamic limit, we can divide the Brillouin zone into a
huge number of cells with linear size

] 4 ]
L 0keent K 7

4 J A

* All the momentum points within the same cell approximately
share the same phase factor

—— 8 g )
> nye tk-0risc A ~ “\'mf\ itkm0rjeca

kéEsame cell

N.: Total occupation number in the cell 7

9: The total number of momentum pointsin a cell
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Searching for the Most Probable Macrostate {n’ }

* Two constraints for an Y Nu=N, Y Npem=E
excited state: i
€m — €k, : single particle energy

corresponding to a cell

* Introduce two Lagrange multipliers @ and f and
examine the fluctuation of the distribution set { NV}

The same as the Fermi-Dirac distribution

from the grand canonical thermal ensemble
if we identify a =— /T and g = 1/T!
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Schematic Illustration of Eigenstate Thermalization

-
<«— Typical

)

o
e .
. KX .
. ces e
iBssssesss: Coapy,
ooooooooo
*leovsesssses
......... Gl
safeesietise in

ooooooooo
ooooooooooo
ccccccccc

————— e nm(a, B

ooooooooo
ooooooooo
ooooooooo
.........

Brillouin Zone

---------
ooooooooo
---------

s333ii33l| «+— Atypical

ststssene

For “all” elements defined in the subsystem A

(Weak) Eigenstate thermalization in free Fermion systems!
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Schematic Illustration of Eigenstate Thermalization

-
«— Typical

(0""'.5‘(-
| Ay
3 Ty

_____ -———- nm(a, 8

d
dk e tk-(r;
: (J,irk 4 i 1

oooooooooooooooooo
oooooooooooooooooo

EE R R R Y s s tesen

PR R RN - IR R R R

.s vos Brillouin Zone
oooooooooooooooooo
oooooooooooooooooo

SeiiiiiiINLNil «— Atypical

--------- ssstssese

For “all” elements defined in the subsystem A

(Weak) Eigenstate thermalization in free Fermion systems!
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Charles Bennet: “A classical house 1s at
least as dirty as its dirtiest room, but a

quantum house can be dirty in every

room, yet still perfectly clean overall.”
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Charles Bennet: “A classical house 1s at
least as dirty as its dirtiest room, but a
quantum house can be dirty in every
room, yet still perfectly clean overall.”

[f your life is a mess and has high entropy.

don’t blame the society, which may well be

in a pure and steady (1.€., eigen!) state.

It is (probably) because you are entangled
with someone who is having an equally
messy life!
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