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Abstract: <p>Quantum superpositions of matter are unusually sensitive to decoherence by tiny momentum transfers, in a way that can be made
precise with a new diffusion standard quantum limit. Upcoming matter interferometers will produce unprecedented spatial superpositions of over a
million nucleons. What sorts of dark matter scattering events could be seen in these experiments as anomalous decoherence? We show that it is
extremely weak but medium range interaction between matter and dark matter that would be most visible, such as scattering through a Y ukawa
potential. We construct toy models for these interactions, discuss existing constraints, and delineate the expected sensitivity of forthcoming
experiments. In particular, the OTIMA interferometer developing at the University of Vienna will directly probe many orders of magnitude of
parameter space, and the proposed MAQRO satellite experiment would be vastly more sensitive yet. This is a multidisciplinary talk that will be
accessible to a non-specialized audience.</p>
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Orientation

Particle
physics

Large superposition
experiments

(matter interferometers,
nanomechanical resonators)

Quantum foundations

(decoherence, consistent histories)
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Outline

e Initial motivation: bowling balls and ping-pong balls
e New SQL for detecting diffusion/decoherence
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Outline

e Initial motivation: bowling balls and ping-pong balls
e New SQL for detecting diffusion/decoherence

e Ideal searches for decoherence-based methods:
Tiny momentum transfers
Soft — not weak — interactions

e Candidate: Dark matter scattering through a
medium-range (~50 nm) mediator
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Outline

e Initial motivation: bowling balls and ping-pong balls
e New SQL for detecting diffusion/decoherence

e Ideal searches for decoherence-based methods:

Tiny momentum transfers
Soft — not weak — interactions

e Candidate: Dark matter scattering through a
medium-range (~50 nm) mediator

e Sensitivity results
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Bowling balls and ping-pong balls

e Suppose everything in
the universe—including
us—were made of
bowling balls

.
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Bowling balls and ping-pong balls

e Suppose everything in
the universe—including
us—were made of
bowling balls

e Now suppose we were
surrounded by a sea of
slow-moving ping-pong

balls \"

g
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Bowling balls and ping-pong balls

e Suppose everything in
the universe—including 0
us—were made of b S
bowling balls S

e Now suppose we were ‘
surrounded by a sea of

slow-moving ping-pong & — \_J
balls ]
Could we ever tell?

o

R
>
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Bowling balls and ping-pong balls

e Is it possible to influence
. : ~
without being 0
influenced? ’
¢ o
e Can there be new S o

degrees of freedom that ‘
see and feel us, but

which we can’t detect? ? i - \_
Dark matter
Supersymmetry

R
>
New neutrinos f " l
X

-

Fifth forces &«
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“Force” Standard Quantum Limit

e Suppose we need to measure a weak force F during a
short time period T acting on a probe M
For example: gravitational waves, for which the time-averaged

force is zero
#
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e Suppose we need to measure a weak force F during a
short time period T acting on a probe M
For example: gravitational waves, for which the time-averaged

force is zero
#
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“Force” Standard Quantum Limit

e Suppose further that we are restricted to position (or
position-like) measurements
Make initial position
measurement
Wait time T
Make final position
measurement

Probe
wavepacket
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“Force” Standard Quantum Limit

e Suppose further that we are restricted to position (or
position-like) measurements
Make initial position
measurement
Wait time T
Make final position
measurement

Probe
wavepacket
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Force Standard Quantum Limit

e For sufficiently weak forces, the wavepacket is
simply not displaced enough to be detectable

T?F

O
Gl

A
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Force Standard Quantum Limit

e For sufficiently weak forces, the wavepacket is
simply not displaced enough to be detectable
e Narrowing the initial wavepacket does not help past
a certain point:
Smaller initial width causes faster spreading during the time
interval
e For optimal width, there is a smallest measurable
displacement
The “standard quantum limit” (SQL)

AzsqL =/ §r -
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Force Standard Quantum Limit

e Smallest measurable displacement implies weakest
measurable force

2
A.I'F:TF

2M
/fT ) [ =2/2
ASL‘SQL p— \/ ﬁ
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Force Standard Quantum Limit

e Smallest measurable displacement implies weakest
measurable force

2
AIF:TF

2M
/fT ) [ =2/2
AZCSQL p— \/ ﬁ

e This is based on a given probe mass M and a given
time interval T

e Crucially, this assumes a particular preparation and
measurement
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Beating the force SQL

e Alternative: produce superposition of widely
separated wavepackets in an interferometer
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Beating the force SQL

e Alternative: produce superposition of widely
separated wavepackets in an interferometer

e The weak force is associated with a potential energy
difference U, between arms
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Beating the force SQL

e In principle can measure arbitrarily weak forces for
sufficiently wide wavepacket separation L

[
U
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Force versus diffusion SQL

e Gravitational waves are weak classical forces
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Force versus diffusion SQL

e Gravitational waves are weak classical forces

e A classical influence on a quantum probe can always
be modeled as a unitary transformation

e But Brownian baths and other sources of diffusion
and decoherence cannot be modeled as unitary
Rather, the sources may become entangled with the probe

Fa
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Force versus diffusion SQL

e We can prove an analogous limit for detecting
collisional decoherence as for detecting weak forces
PRA 92, 010101(R) (2015)
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Force versus diffusion SQL

e We can prove an analogous limit for detecting
collisional decoherence as for detecting weak forces
PRA 92, 010101(R) (2015)
e The prototypical source of collisional decoherence is
quantum Brownian motion (QBM)
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Force versus diffusion SQL

e We can prove an analogous limit for detecting
collisional decoherence as for detecting weak forces
PRA 92, 010101(R) (2015)
e The prototypical source of collisional decoherence is
quantum Brownian motion (QBM)

e In the appropriate special case, the idealized probe
dynamics are

. > D -> -
Owp = —ilH, p] = [&,[2, pl]
A2
H = P Fzx

2m
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Force versus diffusion SQL

e ['parameterizes the strength of the force

e D parameterizes the strength of diffusion and
decoherence
D induces random walk (diffusion) in momentum space
For terms sufficiently far off p’s main diagonal that H can be
ignored, we get pure decoherence
. D,
815)0 — _Z[Ha p] o E[Ta [.’T), IOH

N\ —Dt(z—z")?

pi(x,2") =~ pola, x")e forlargex — 2/
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Force versus diffusion SQL

e Along with F, the coefficient D is one of a handful of
variables which parameterize a class of Markovian
dynamics that

generalize the Harmonic oscillator to open system and
are uniquely preferred by symplectic symmetry
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Force versus diffusion SQL

e Along with F, the coefficient D is one of a handful of
variables which parameterize a class of Markovian
dynamics that

generalize the Harmonic oscillator to open system and
are uniquely preferred by symplectic symmetry

e “Symplectic covariant” quantum Brownian motion

Very satisfying topic if you want to get better intuition for the

Wigner function and fully-general linearized evolution in
phase space

Makes decoherence-diffusion connection transparent
See PRA, appendix to arXiv:1507.04083, and citations therein
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SQLs in phase space
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Force versus diffusion SQL

e Just like for the traditional force SQL, diffusion SQL
can be beaten by non-classical preparations like cat
states and squeezed states
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Force versus diffusion SQL

e Just like for the traditional force SQL, diffusion SQL
can be beaten by non-classical preparations like cat
states and squeezed states
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Classical undetectability

e These can detect classically undetectable
phenomena
In 2 — 0 limit, wavepackets become points in phase space

Can simultaneously take D and F' — 0, while phase shift and
decoherence remain finite.

. ~, F,.D.h — 0
" N, s, 0 const.

L 4

N Ve 'y
V' Vg N
) =FLT/h —— e
| 2 ™ v
s = DL*T/h N}
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Classical undetectability

e These can detect classically undetectable
phenomena
In 2 — 0 limit, wavepackets become points in phase space
Can simultaneously take D and F' — 0, while phase shift and
decoherence remain finite.
e Large (~mesoscopic) superpositions are uniquely
sensitive detectors
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Classical-to-quantum sensitivity

Wigner
e More generally.' o T = oc function
Increased sensitivity to Pl

small momentum

transfers comes as

soon as you start l
cooling down

Spatial coherence length
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Classical-to-quantum sensitivity

e Once ground state is T =0
reached — the SQL — £« SQL
e, Sanga”’ se C't' t
further sensitivity sensitivity

requires non-classical
states
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Classical-to-quantum sensitivity

e Once ground state is T=0
reached — the SQL — g
further sensitivity
requires non-classical
states l
Cat states
l “Quantum-enhanced”
sensitivity
—
—
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Classical-to-quantum sensitivity

e Once ground state is T=0
reached — the SQL —
further sensitivity
requires non-classical / \
states

Cat states Z
Squeezed states / VTt

.....
------

More exotic... I
N\_%
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Classical-to-quantum sensitivity

e Once ground state is
reached — the SQL —
further sensitivity
requires non-classical
states

Cat states
Squeezed states
More exotic...

e Key feature: spatial

coherence

Manifests as fine structure
in Wiger function

scece

.
L34
.
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Force versus diffusion SQL

e Sensitivity of cat states is proportional to L2

— }12
2T

A L A Dsonso
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Force versus diffusion SQL

e Sensitivity of cat states is proportional to L2
e Reduces to SQL sensitivity as L goes to zero

52
L Dgense = —
A A (=A™ > IJZT

l l

Al DsqL
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Bowling-ball interferometry

A
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Solution in search of a problem

e Quantum superpositions can detect momentum
transfer that can’t be detected any other way

e 1: What sorts of new particles and forces fit the bill?
High flux particles scattering elastically and often but
transferring tiny amounts of momentum

e 2: What’s best superposition probe (target)? Some
considerations:

Momentum sensitivity determined by superposition
separation (coherence length), not recoil

Heavier targets reduce recoil but increase scattering cross-
section

Important: “coherent elastic scattering”
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Aside: Coherent elastic scattering

e Very general property of soft elastic scattering from
targets composed of multiple (V) charges
Not dependent on detail of particles or mediators
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Aside: Coherent elastic scattering

e Very general property of soft elastic scattering from
targets composed of multiple (V) charges
Not dependent on detail of particles or mediators

e When wavelength of incident particle is larger than
target size, A > R, one gets o ~ N>
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Aside: Coherent elastic scattering

e Very general property of soft elastic scattering from
targets composed of multiple (V) charges
Not dependent on detail of particles or mediators

e When wavelength of incident particle is larger than
target size, A > R, one gets o ~ N>

e When A € )\ € R, there are complicated interference
effects (constructive and destructive)

e Rule of thumb: enhancement is
proportional to number of charges in

“coherent scattering volume”
Scale set by momentum transfer)
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What type of superposition targets?

e We can superpose...
photons over many km, but they have no inertia
neutrons over macroscopic distances, but their inertia is tiny
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Basic dark matter

e All evidence is essentially gravitational

e Many, many competing ideas

e Candidate explanations must satisfy a wide range of
experiments and observations stretching back

decades
Many indirect, model-dependent restrictions

e Relatively few model-independent results
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The dark matter halo

e But we have a generic local prediction: roughly spherical,
virialized halo of dark matter enveloping the Milky Way
Isotropic in galactic rest frame
Maxwellian velocity distribution
Local density ~ 0.4 GeV/cm3
Typical velocity ~ 230 km/s

e Assumed for limits set by
underground detectors

e Based only on local,
present-day observation - Visible matter
(no cosmology necessary)
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Toward a bespoke theory of dark matter...

e Want scattering dominated by small momentum
transfer ~ h/(50 nm)

e Otherwise, should be rarely interacting

e Itay Yavin: forward scattering off atoms through
new massive scalar mediator (“heavy photon”)
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Interactions

e DM-nucleon interaction = \//’/ |

e Nucleon-nucleon Yukawa
potential W

N.p N,p /\
—7 T~
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Interactions

e DM-nucleon interaction = V |

e Nucleon-nucleon Yukawa
potential W

N.p N,p /\
—7 TN

' N\ — '(Ifl 1 —mr [k

> W =Emgne™ O

e Strongest constraints on a,; and m 4, come mostly

from Casimir-force and neutron scattering experiments
Nucleon-Nucleon rather than DM-Nucleon
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Particle dark matter

e No value of ay,...
avoids DM self-interaction constraints (e.g., bullet cluster) and
still detectable

Pirsa: 15110083 Page 56/90



Particle dark matter

e No value of ay,...
avoids DM self-interaction constraints (e.g., bullet cluster) and
still detectable

e So must be no more than an 10% component of DM
We imagine a dark sector that’s complicated, just like regular
matter (bound states, multiple forces, etc.)

Would be just one part of a vast dark sea

e Can construct arbitrarily complicated models to
boost or suppress signal (e.g. large dark nuclei —
Robert Lasenby)

Sensitivity plots are just a guide
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Particle dark matter

e Model then has three free parameters:
Mediator-Nucleon coupling: ay,=g2/47
Mediator mass: m,.4 (with corresponding length scale Ay ;....a)
Dark matter mass mpy,
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What’s the signal?

e For widely separated wavepackets in
interferometers, DM would act as a source of

decoherence
(a) , ’ (=0 (b ﬁ =T © (=T
4 ) : D=0 ( Ly
P ) AL l’ . I|lf . I D < Dy
A : ,
g v |
X wW
\ L x (8]
\ () \ §]
0 | ( ;H IIJ ( 0 j
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Detection through decoherence

e Initial state: [INL) + [N&)] | Din)
e [inal state:
e Measurement:
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Anomalous decoherence

e There are many possible sources of decoherence and
noise

e Major challenge of nanomechanics is identifying and
defeating one level of noise after another
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Anomalous decoherence

e There are many possible sources of decoherence and
noise

e Major challenge of nanomechanics is identifying and
defeating one level of noise after another

e Anomalous decoherence does not imply dark matter

However, the inverse statement is true: a cold (or quantum)
resonator implies all sources of noise above some threshold
have been eliminated

This can establish robust dark matter exclusion limits

e But if we think anomalous decoherence might be due
to dark matter, how could we be sure?
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Establishing convincing evidence

e Try varying experimental parameters, e.g.
Size and shape of the resonator
Applied driving/cooling
Elemental composition of resonator
Isotopic composition of elements

(Analogous parameters exist for interferometers)
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Establishing convincing evidence

e Try varying experimental parameters, e.g.
Size and shape of the resonator
Applied driving/cooling
Elemental composition of resonator
Isotopic composition of elements

(Analogous parameters exist for interferometers)

e General sources of decoherence will not have same
dependence on these parameters
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Establishing convincing evidence

e Try influencing expected dark matter flux

Shield experiment from dark matter (concrete, lead,
underground)

Strength of dark matter wind will vary by order unity over day,

and several percentage points over the year, due to Earth’s
motion

Pirsa: 15110083 Page 65/90



Establishing convincing evidence

e Try influencing expected dark matter flux

Shield experiment from dark matter (concrete, lead,
underground)

Strength of dark matter wind will vary by order unity over day,

and several percentage points over the year, due to Earth’s
motion

e In general, the orientation of the resonator will give
order-unity change to D

Resonators are naturally directional detectors!
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Existing and proposed interferometers

e Look at 4 benchmark interferometers to see the sort
of sensitivity that’s possible for our proof-of-concept
model of DM

#1: KDTL - exists; operating at design specification
#2: OTIMA - exists; currently scaling up

#3: Bateman et al. — proposal; reasonable

#4: MAQRO — proposal; satellite (speculative)
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Interferometric benchmarks

e #1: Kapitza-Dirac-Talbot-Lau (KDTL) interferometer
Reached >103 amu (later >104)
Gerlich et al. Natural Communications 2, 263 (2011)

a b ¢ Y Detector
:'|I " %
e X ",‘_-"
@ '!l' -"3§3”H
o 3
. $
259
d e f e
s X *
<y y L L
e l'y"' -'. :
"y " 3y s
.r"- T '
" |
oo
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Interferometric benchmarks

e #3: Bateman et al. “point

source” proposal N_
Optical hybrid: 5 nm, 10® amu >
nzlljnopart}i,cle suspended in trap, /lh I
cooled, then dropped through
laser grating |
J. Bateman et al. Nature
Communications 5, 4788 ’ 275 mm

(2014)

A
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Interferometric benchmarks

e #4: Optically trapped 120 nm silica nanoparticle on
board the MAQRO satellite proposal

Nanoparticle suspended, cooled to COM motional ground
state, then brought into superposition

Tech under development. See M4 mission proposal made to
European Space Agency (arXiv:1503.02640)
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Interferometric benchmarks

e #4: Optically trapped 120 nm silica nanoparticle on
board the MAQRO satellite proposal

Nanoparticle suspended, cooled to COM motional ground
state, then brought into superposition

Tech under development. See M4 mission proposal made to
European Space Agency (arXiv:1503.02640)
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Conservative assumptions

e Assume: dark matter entering the Earth is absorbed
and disappears,

e Rather than...

reflected (isotropically) or

ol
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10~V 10°Y 1079 10°7 1079 1072

| A | nm | micron
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OTIMA

1079 10~Y 10~7 1079 1072

10~V
| A | nm | micron
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Optimism

@ Lets I‘elax Conservative lemperature
110 F = = ====%— Lithosphere - 4

assumptions ——————— = Upper Mantle ¢ -

Allow for greenhouse
effect, reflection from
ground, etc.

Lower Mantle

_________________

e Several different
parameters (effective
Ty Teflectivity, etc.) ywr

Just fill in everything that’s | e O . 70001
possible

Depth (km)

QOuter Core

Most optimistic

Pirsa: 15110083 Page 80/90



Optimism

@ Lets I‘elax Conservative lemperature
110 F = = ====%— Lithosphere - 4

assumptions ——————— = Upper Mantle ¢ -

Allow for greenhouse
effect, reflection from
ground, etc.

Lower Mantle

_________________

e Several different
parameters (effective
Ty Teflectivity, etc.) ywr

Just fill in everything that’s | e O . 70001
possible

Depth (km)

QOuter Core

Most optimistic

Pirsa: 15110083 Page 81/90



Optimism

@ Lets I‘elax Conservative lemperature
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Take home

e Colder targets are more sensitive to small kicks
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Take home

e Colder targets are more sensitive to small kicks
e Large superpositions have quantum-enhanced (“T < 0”)
sensitivity
Supremacy precise in sense of SQL, just like squeezed light in LIGO

e Interferometers especially sensitive to medium-range forces
Most competitive when range ~ size of superposed object ~ 10 nm
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Superposition motivations

e There are several reasons to build
large quantum superpositions
Push the limits of quantum mechanics
Search for a “Sure/Shor separator”
Improve techniques of quantum control

Sensitive measurement of short-range classical
forces
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Superposition motivations

e There are several reasons to build
large quantum superpositions
Push the limits of quantum mechanics
Search for a “Sure/Shor separator”
Improve techniques of quantum control

Sensitive measurement of short-range classical q,% ¢ *4, /
forces » ‘_/ R, | 1% “\
e This talk gives another one: searches P
L

for o/
tiny momentum transfers |
diffusive forces

e Gives new motivations for large- ' S
separation (i.e., unclamped) ™~ ¢
nanomechanical resonators Guccione et al., PRL 111,

183001 (2013)
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The End

Write jessriedel@gmail.com to get
reminder email when this is
posted to arXiv

PRA 92, 010101(R) (2015)
PRD 88, 116005 (2013)

Slides/video/blog: jessriedel.com
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