Title: What the Reeh-Schielder theorem tells us about relativistic causality, or, Can experimenters in alab on Earth create a Tgf Mahal on the back

of the moon?
Date: Nov 03, 2015 03:30 PM
URL: http://www.pirsa.org/15110078

Abstract: <p>The Reeh-Schlieder theorem says, roughly, that, in any reasonable quantum field theory, for any bounded region of spacetime R, any
state can be approximated arbitrarily closely by operating on the vacuum state (or any state of bounded energy) with operators formed by smearing
polynomials in the field operators with functions having support in R. This strikes many as counterintuitive, and Reinhard Werner has glossed the
theorem as saying that &€aBy acting on the vacuum with suitable operations in aterrestrial laboratory, an experimenter can create the Taj Maha on
(or even behind) the Moon!&€» Thistalk hastwo parts. First, | hope to convince listeners that the theorem is not counterintuitive, and that it follows
immediately from facts that are aready familiar fare to anyone who has digested the opening chapters of any standard introductory textbook of
QFT. In the second, | will discuss what we can learn from the theorem about how relativistic causality is implemented in quantum field
theories.</p>
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The Reeh-Schlieder theorem

e Under mild assumptions, for any quantum field theory in
Minkowski spacetime, for any open spacetime region R, any
state can be approximated arbitrarily closely by acting on the
vacuum with an operator associated with R.
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This strikes some as counterintuitive

Rainer Verch: This result by Reeh and Schlieder appears entirely
counterintuitive since it says that every state of the theory can be
approximated to arbitrary precision by acting with operators (op-
erations) localized in any arbitrarily given spacetime region on the
vacuum. To state it in a rather more drastic and provocative way
(which | learned from Reinhard Werner): By acting on the vacuum
with suitable operations in a terrestrial laboratory, an experimenter
can create the Taj Mahal on (or even behind) the Moon!
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The “Taj Mahal Principle”

e From Reinhard Werner:

Idea of proof: The TaJ PriHCiple

L. Landau
R Verch & RFW

(A corollary of the Reeh-Schlieder Theorem)

There is a device for Alice ) Bob. who i1s light years away.
such that if she sees a click. W sees any specified state.
she can be sure that

Pretty damn unlikely! But @# 2% @R
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Plan of talk

e [ he Reeh-Schlieder theorem is not counter-intuitive.

e Nevertheless, thinking about the theorem is helpful in thinking
about how relativistic causality is implemented in the theory.
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The set-up

e Assume we have a quantum field theory, with field operators
Oa(x). Observables are self-adjoint operators formed from
polynomials in these fields, smeared with test functions.
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The set-up

e Assume we have a quantum field theory, with field operators
Oa(x). Observables are self-adjoint operators formed from
polynomials in these fields, smeared with test functions.

e For any spacetime region R, let P(R) be the algebra of
operators formed by smearing polynomials in the fields with
test functions with support in R.
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Assumptions

e Translation covariance. Assume we have a unitary group of
operators implementing spacetime translations:

Fal ] A

oa(x + a) = UT(a) oa(x) U(a).
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Assumptions

e Translation covariance. Assume we have a unitary group of
operators implementing spacetime translations:

Al A

Oalx + a) = U'(a) oa(x) U(a).

e [here are self-adjoint operators lf’,,.;: = 0....4, that are
infinitesimal generators of these spacetime translations,

These correspond to energy-momentum.
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Assumptions, cont'd

e Spectrum Condition. For any vector a in the positive
light-cone, the spectrum of the operator P - a consists of
positive reals.
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Microcausality

e Not needed for R-S theorem, but will be used in a corollary:

Microcausality. If A and B are self-adjoint operators
associated with spacelike separated regions, then they
commute.
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The theorem

e For any open region R, let H(R) be the norm closure of

P(R)[0).
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The theorem

e For any open region R, let H(R) be the norm closure of
P(R)|0).

e Theorem (Reeh & Schlieder 1961). Under the stated
assumptions, for any open region R, H(R) = H.
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How to prove it: one step at a time

e Pick one field (A)“, and consider vectors of the of the form

b)) = / d*x f(x) ol (x)[0).

o Let H, be the subspace spanned by vectors like that.

e For any open region R, let H,(R) be the subspace spanned
by vectors like that, for f with support in K.
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How to prove it: one step at a time

Pick one field ¢, and consider vectors of the of the form

) = / d*x F(x) 3L (x) [0).

Let H, be the subspace spanned by vectors like that.

e For any open region R, let H,(R) be the subspace spanned
by vectors like that, for f with support in K.

Lemma 1. For any open region R, Ho(R) = H,.
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How to prove it: one step at a time

Pick one field ¢, and consider vectors of the of the form

) = / d*x £(x) 3L (x) [0).

Let H, be the subspace spanned by vectors like that.

e For any open region R, let H,(R) be the subspace spanned
by vectors like that, for f with support in K.

Lemma 1. For any open region R, Ho(R) = Ha.
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Proving Lemma 1.

o Let x) = (:;.r\(X)‘O), and define wavefunctions:
Da(X) = (x|®) = (0[Ga(x)|®).

e Any |®) € H, can be uniquely characterized by its
wavefunction.

e Unsurprising fact 1. If ©,(x) vanishes everywhere in some
open set R, it vanishes everywhere.

Page 21/54
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Proving Lemma 1.

Unsurprising fact 1. If ©,(x) vanishes everywhere in some
open set R, it vanishes everywhere.

To show: For any open region R, H,(R) = Ha.

If Ho(R) # He, there must be some |W) € H in the
orthogonal complement of H,(R)

If ,
W) = / d*x f(x) of (x)]0).

then

(W[o) = /'d4xf<x)*<0|3,.(x)|¢>

= / d*x f(x)* da(x).
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Two-particle sector

e For any fields o,,03, consider vectors of the form

‘(b) = /d4X1 /d4X2 f(Xl.X’_))(A)j‘l(Xl)(:Z(X"_))|O>.
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Et cetera!

e Repeat for all sequences oy, ...an: Ha,....a,(R) is dense in
,}-{fll....(\n'

e Anything that is in the orthogonal complement of H(R) must
be in the orthogonal complement of H,, . .,(R), and hence,
in the orthogonal complement of H,, . .a,-
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Et cetera!

e Repeat for all sequences a....an: Ha,..a,(R) is dense in
,}-[fil....(ln'

e Anything that is in the orthogonal complement of H(R) must
be in the orthogonal complement of H,, . .,(R), and hence,
in the orthogonal complement of H,, . .a,-

e But recall: H is the smallest Hilbert space containing each
Hul....un-

e [ herefore, there is no nonzero vector in ‘H that is in the
orthogonal complement of H(R).
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Et cetera!

* Repeat for all sequences ay....an. Hay, .a,(R) is dense in

H(Ih g

» Anything that is in the orthogonal complement of #(R) must
be in the orthogonal complement of H, o, (R). and hence,
in the orthogonal complement of #

LT 1]
» But recall: # is the smallest Hilbert space containing each
|

O poosliy

* Therefore, there is no nonzero vector in A that is in the
orthogonal complement of H(R)
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Et cetera!

» Repeat for all sequences ay. ..an. Hay. a,(R) is dense in

’Hll]. Oige

s Anything that is in the orthogonal complement of #(R) must
be in the orthogonal complement of Ho,. o,(R). and hence,
in the orthogonal complement of H,

O] olip

» But recall: # is the smallest Hilbert space containing each
Haypctn

* Therefore, there is no nonzero vector in H that is in the
orthogonal complement of H(R)

Pirsa: 15110078 Page 34/54




Et cetera!

» Repeat for all sequences ay....an. Hay, a,(R) is dense in
'Hn]. Oigy*

» Anything that is in the orthogonal complement of #(R) must
be in the orthogonal complement of H,, a,(R). and hence,
in the orthogonal complement of #

] oo Cln

» But recall: # is the smallest Hilbert space containing each
Hayuorn

* Therefore, there is no nonzero vector in H that is in the
orthogonal complement of H(R)

Pirsa: 15110078 Page 35/54




Et cetera!
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An easy corollary

e Assume Microcausality.

e [he vacuum is not an eigenstate of any observable belonging
to a region R with non-empty complement.
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A mistaken intuition

One might be tempted to think of the state
x) = oL(x)10)

as one such that, on any hypersurface containing x, there is a
particle located at x, and is just like the vacuum at all points
spacelike from x.

Not so: field quanta cannot be localized!

Following Knight (1961), say that a state is strictly localized
in a region R if expectation values for all observables
pertaining to the complement of R are the same as their
vacuum expectation values.

Theorem (Knight 1961). No state of finite particle number is
strictly localized in any region whose complement contains an
open set.
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Strictly localized states

e Well, then, are there any states strictly localized in some
region that isn't the whole of spacetime?

e Yes: take self-adjoint A belonging to some bounded region R;
then (assuming Microcausality)
efA\o)

is strictly localized in the light-cones of R.

e Example: particle creation by a classical source field j(y)
localized in R.

e Single-particle wave function:

O(x) = / d*y (x|y)i(y).
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Strictly localized states

e Well, then, are there any states strictly localized in some
region that isn't the whole of spacetime?

e Yes: take self-adjoint A belonging to some bounded region R;
then (assuming Microcausality)
efA\o)

is strictly localized in the light-cones of R.

e Example: particle creation by a classical source field j(y)
localized in R.

e Single-particle wave function:

o) = [ dy i)
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Can we create the Taj Mahal?

e How to model our interventions?

e Assume: for any operation we can perform, there is a set {K;}
of operators, such that

Y KIKi=1.

e |f the initial state-vector is |W), the result of our operation will
be K; |V), for some i, and the probabilities for which one it
will be are given by

o = IKIV)IE
[v)112
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Did Alice create the Taj Mahal?

e By the Corollary to the R-S Theorem, Bob's detector has a
finite probability of firing whether or not Alice performs her
operation.
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Did Alice create the Taj Mahal?

e By the Corollary to the R-S Theorem, Bob's detector has a
finite probability of firing whether or not Alice performs her

operation.

e By Microcausality, Alice can't change that probability by
choosing whether or not to do the operation.
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e \What we have is a correlation: Bob's results are correlated
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Did Alice create the Taj Mahal?

e By the Corollary to the R-S Theorem, Bob's detector has a
finite probability of firing whether or not Alice performs her
operation.

e By Microcausality, Alice can't change that probability by
choosing whether or not to do the operation.

e \What we have is a correlation: Bob's results are correlated
with Alice’s.

e This relation is symmetric: nothing distinguishes one as cause,
the other, effect.

e Conceptually, we're on familiar territory: correlated results of
experiments in an entangled state.
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