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Eigenstate Thermalization Hypothesis

Deutsch(1991), Srednicki(1994)
H|Ej) = Ei|Eq)
Typically for [v) = 3, a |Ei).
(WIAR) [0) = 3 arsje!E- A — 3 Jaif*Au
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at large t. One explanation is that
« Ay changes smoothly with the energy and
e Ay is much smaller compared to Aj.

Page 3/21




Pirsa: 15110072

Eigenstate Thermalization Hypothesis

Deutsch(1991), Srednicki(1994)
H |Ei) = Ei|Ei)
Typically for |¢) =", aj |Ej),

(WAt [v) = aiafe’ETBIA; 3 " |52 A;

N
at large t. One explanation is that

e A;;i changes smoothly with the energy and

e Aj is much smaller compared to Aj.

Page 4/21



Many-body Localization

Basko, Aleiner, and Altshuler(2005)
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Perturbative stability of Anderson localization against interaction!
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Localization from superselection rules

We propose a different mechanism for localization, which is based
on an emergent superselection rule.

e A specific model is studied under an arbitrary but weak, local
perturbation.

e Almost all states with O(1) energy are localized.

e Translation invariant or not, perturbative stability guaranteed
against any locally interacting perturbation.

e Very different from Mott insulator.

e Unfortunately, the case for the finite energy density remains
open.
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Position-dependent superselection rule : Wen's plaquette
model

Wen (2003)

H= =3 o0l ol
(i)
This is formally equivalent to the Toric code.[Kitaev (1996)]
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Cubic code

An extreme form of what we observed in Wen's plaquette model
occurs. But first, the model (Haah 2011):
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Cubic code

An extreme form of what we observed in Wen's plaquette model
occurs. But first, the model (Haah 2011):
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No-strings rule
Haah (2011)
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Superselection rules in cubic code

e An isolated defect cannot be moved by applying an operator
inside the ball.

e There are infinitely many topological charges.
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Perturbation theory

Let's start with an excited state of the original Hamiltonian, and
perturb it by V = > v,. How does the state change?

. Ui V' |1
st = S VR ).
i — Ej

J#i

At low order of the perturbation theory, |E; — E;| > O(1) because
you end up creating more and more defects. |E; — E;| =~ 0 only at
high order, at which point the contribution becomes negligible.
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Dynamical properties

There are states [1) of a perturbed system which have sparse
defect configuration such that

’ <(| e:‘(H+V)r ‘("> ‘ >1— tLue—ncL”.

* System size is L°.
* Defects are effectively frozen forever.
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Quasiparticle dispersion relation

Suppose H -+ V is translation-invariant and suppose we have a
state |’) with localized energy profile. We can infer the dispersion
relation of the quasiparticles by calculating

(W& (H+ V) [v(k)).

W(k) = Tre™7 2.
7
* Ty : translation operator
"d'"]k]j,

e The leading dependence on kis ~ L%

e At L — 0o, there is no k dependence. (topologically protected
flat band)

o Very different from Mott insulator.
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So why are these things all true?

» Spectral stability of topologically ordered systems [Bravyi,
Hastings, Michalakis (2010)]
« Quasi-adiabatic continuation [Hastings, Wen (2005)]
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Locally gapped states: Dissecting each subspaces

P' = UP(0)U,

where U is a *finite depth* quantum circuit. Since the
unperturbed model is exactly solvable, we know exactly how the

subspace P(0) looks like.
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Locally gapped states: Dissecting each subspaces

An eigenstate |¢) of the original Hamiltonian with sprase defect
configuration is locally gapped, meaning:
e They are either separated from the other eigenstates by at
least a finite energy, or
e They cannot be mapped into other eigenstates by local
operator(= things that can be supported on
O(L) x O(L) x O(L) region)
These excited states are “topologically protected” in a similar
sense in which the ground state of topologically ordered states are
protected
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Summary: What did we learn?

Majority of the low energy states of the cubic code are
localized, even if you add perturbation.

They are localized in a very strong sense; their effective mass
is infinite.

Dynamically, once the defects are separated, they are stuck
their forever.

If we assume that we never reach these configurations
dynamically, then we must conclude that the system never

visits the majority of the low energy phase space.

* Studied only for cubic code, but works for other models as well,
e.g.. Chamon(2006). Kim(2011). Yoshida(2013). Vijay et al.(2015)
* Future direction: Finite energy density?
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