Title: Localization from superselection rules in translation invariant systems

Date: Nov 05, 2015 04:15 PM

URL: http://pirsa.org/15110072

Abstract:

Localization from superselection rules in translation-invariant systems

Isaac H. Kim

Perimeter Institute for Theoretical Physics Waterloo, ON N2L 2Y5, Canada

Nov. 5, 2015

1505.01480
Joint work with Jeongwan Haah(MIT)

Eigenstate Thermalization Hypothesis

Deutsch(1991), Srednicki(1994)

$$H|E_i\rangle = E_i|E_i\rangle$$

Typically for $|\psi\rangle = \sum_i a_i |E_i\rangle$,

$$\langle \psi | A(t) | \psi \rangle = \sum_{i,j} a_i a_j^* e^{i(E_i - E_j)t} A_{ij} \rightarrow \sum_i |a_i|^2 A_{ii}$$

at large t. One explanation is that

- \bullet A_{ii} changes smoothly with the energy and
- A_{ij} is much smaller compared to A_{ii} .

Localization from superselection rules

We propose a different mechanism for localization, which is based on an **emergent superselection rule**.

- A specific model is studied under an arbitrary but weak, local perturbation.
- Almost all states with O(1) energy are localized.
- Translation invariant or not, perturbative stability guaranteed against any locally interacting perturbation.
- Very different from Mott insulator.
- Unfortunately, the case for the finite energy density remains open.

Pirsa: 15110072 Page 6/21

Position-dependent superselection rule : Wen's plaquette model

Wen (2003)

$$H = -\sum_{(i,j)} \sigma_{(i,j)}^{x} \sigma_{(i+1,j)}^{z} \sigma_{(i+1,j+1)}^{x} \sigma_{(i,j+1)}^{z}$$

This is formally equivalent to the Toric code. [Kitaev (1996)]

Pirsa: 15110072 Page 8/21

Cubic code

An extreme form of what we observed in Wen's plaquette model occurs. But first, the model (Haah 2011):

$$H=-\sum_i(G_i^Z+G_i^X).$$

*
$$Z = \sigma^z$$
, $X = \sigma^x$.

No-strings rule

Haah (2011)

Pirsa: 15110072 Page 10/21

Superselection rules in cubic code

- An isolated defect cannot be moved by applying an operator inside the ball.
- There are infinitely many topological charges.

Pirsa: 15110072 Page 11/21

Superselection rules in cubic code

- An isolated defect cannot be moved by applying an operator inside the ball.
- There are infinitely many topological charges.

Pirsa: 15110072 Page 12/21

Perturbation theory

Let's start with an excited state of the original Hamiltonian, and perturb it by $V = \sum_{n} v_n$. How does the state change?

$$\delta |\psi_i\rangle = \sum_{j \neq i} \frac{\langle \psi_i | V | \psi_j \rangle}{E_i - E_j} |\psi_j\rangle.$$

At low order of the perturbation theory, $|E_i - E_j| > O(1)$ because you end up creating more and more defects. $|E_i - E_j| \approx 0$ only at high order, at which point the contribution becomes negligible.

Dynamical properties

There are states $|\psi\rangle$ of a perturbed system which have sparse defect configuration such that

$$|\langle \psi | e^{i(H+V)t} | \psi \rangle| \ge 1 - tL^{\alpha}e^{-cL^{\eta}}.$$

- * System size is L^3 .
- * Defects are effectively frozen forever.

Dynamical properties

There are states $|\psi\rangle$ of a perturbed system which have sparse defect configuration such that

$$|\langle \psi | e^{i(H+V)t} | \psi \rangle| \ge 1 - tL^{\alpha} e^{-cL^{\eta}}.$$

- * System size is L^3 .
- * Defects are effectively frozen forever.

Pirsa: 15110072 Page 17/21

Pirsa: 15110072 Page 18/21

Pirsa: 15110072 Page 19/21

Pirsa: 15110072 Page 20/21

Pirsa: 15110072 Page 21/21