Title: Abelian Topological Phases: Symmetries, Defects, and Entanglement

Date: Nov 05, 2015 03:00 PM

URL: http://pirsa.org/15110071

Abstract:

Pirsa: 15110071 Page 2/23

TQFT Description of 2+1D Abelian Topological Phases

$$\mathcal{L}=rac{1}{4\pi}K_{IJ}\epsilon_{\mu
u
ho}lpha_I^\mu\partial^
ulpha_J^
ho,\quad I,J\in 1,2,\cdots,r.$$
 [Wen and Zee,'92]

 α_I - U(1) gauge fields. K is an integer valued symmetric matrix.

Bulk Topological Data Is Contained in the K-matrix

GSD on Torus = Det(K)

Chiral Central Charge = Signature of K

Pirsa: 15110071 Page 3/23

The K-Matrix and Quasiparticle Lattice

Laughlin State: v=1/3, K=3

Image of K (local electrons)

3

О 6

Pirsa: 15110071 Page 5/23

Pirsa: 15110071 Page 6/23

Anyonic Symmetries

Laughlin State: v=1/3, K=3.

Point Group Type: WKW^T=K

W is a unimodular matrix with integer entries. Acts as point group operations on lattice that take **local** particles to **local** particles. Preserves S and T.

Anyonic Symmetries

$WKW^T=K$

- Set of all W's satisfying this are Aut(K).
- Inner(K) are all automorphisms that take a qp to the same qp modulo local particles
- (Point-group type) Anyonic Symmetries are given by Outer(K)=Aut(K)/Inner(K)

Pirsa: 15110071 Page 8/23

Anyonic Symmetries of Bosonic ADE Quantum Hall States

Given a simply-laced Lie Algebra A_n, D_n, E_n its Cartan matrix is symmetric and integer valued. If we use the Cartan matrix as the K-matrix for a Chern Simons theory we get an Abelian topological phase with local bosons whose edge theory is the corresponding ADE Wess-Zumino-Witten CFT at level 1.

 $A_n = su(n)_1$ have n anyon sectors with statistics like the v=1/n Laughlin state but bosonic versions

 $D_n = so(2n)_1$ have 4 anyon sectors. When n is even the 4 quasiparticles are like 1,e,m, ψ of the toric code. When n is odd the are like 1,s,s*, ss* of the double semion theory. Statistics depend on n.

Khan, Teo, Hughes, PRB (2014)

Anyonic Symmetries of Bosonic ADE Quantum Hall States

Given a simply-laced Lie Algebra A_n, D_n, E_n its Cartan matrix is symmetric and integer valued. If we use the Cartan matrix as the K-matrix for a Chern Simons theory we get an Abelian topological phase with local bosons whose edge theory is the corresponding ADE Wess-Zumino-Witten CFT at level 1.

 $A_n = su(n)_1$ have n anyon sectors with statistics like the v=1/n Laughlin state but bosonic versions

 $D_n = so(2n)_1$ have 4 anyon sectors. When n is even the 4 quasiparticles are like 1,e,m, ψ of the toric code. When n is odd the are like 1,s,s*, ss* of the double semion theory. Statistics depend on n.

 $E_6 \sim su(2)_1$ has 2 anyon sectors $E_7 \sim su(3)_1$ has 3 anyon sectors E_8 is a bosonic integer quantum Hall state with no anyons Non-simply laced have integer, but not symmetric Cartan matrices. These theories are intrinsically non-Abelian even at level 1.

Khan, Teo, Hughes, PRB (2014)

Pirsa: 15110071 Page 11/23

Pirsa: 15110071 Page 12/23

Pirsa: 15110071 Page 13/23

Pirsa: 15110071 Page 14/23

Pirsa: 15110071 Page 15/23

Pirsa: 15110071 Page 16/23

Pirsa: 15110071 Page 17/23

Pirsa: 15110071 Page 18/23

Pirsa: 15110071 Page 19/23

Entanglement in Homogeneous Systems

Requirements on the choice of gapping terms:

- Gapping terms are primitive (no extra local degeneracy)
- Topological GSD unchanged
- Edge theory unchanged
- · Hall conductance and Thermal Hall conductance unchanged
- No new topological quasi-particles

Cano, Hughes, Mulligan, PRB (2015)

Pirsa: 15110071 Page 20/23

Entanglement in Homogeneous Systems

Requirements on the choice of gapping terms:

- Gapping terms are primitive (no extra local degeneracy)
- Topological GSD unchanged
- Edge theory unchanged
- Hall conductance and Thermal Hall conductance unchanged
- · No new topological quasi-particles

Example: Take v=2, $K=I_2$ Single particle-backscattering produces $S=\alpha_1L$

Cano, Hughes, Mulligan, PRB (2015)

Pirsa: 15110071 Page 22/23

Pirsa: 15110071 Page 23/23