Title: Some new torsional local models of heterotic strings

Date: Nov 23, 2015 11:00 AM

URL: http://pirsa.org/15110057

Abstract: In this talk, I will present some new torsional local models for heterotic strings constructed from twistor geometry. These models include the resolved conifold O(-1,-1) as a special example.

Pirsa: 15110057 Page 1/28

Some new torsional local models for heterotic strings

Teng Fei

Massachusetts Institute of Technology

String Seminar @ Perimeter Institute

Nov. 23, 2015

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

1 / 29

Pirsa: 15110057 Page 2/28

Overview

- Background and Motivation
- Calabi-Gray models (compact)
 - Construction
 - Geometry of Calabi-Gray models
 - Degenerate solutions
 - A new geometric interpretation of Calabi-Gray models
- Genuine solutions on a class of noncompact CY3
 - Construction
 - Strategy for finding solutions
 - A concrete example
- Conclusion

4 □ > 4 @ > 4 분 > 4 분 > 1 분 9 Q Q

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

2 / 29

Pirsa: 15110057 Page 3/28

History

- Candelas-Horowitz-Strominger-Witten'85: compactification of superstrings with flux $H=0 \rightsquigarrow \text{Ricci-flat K\"{a}hler CYs}$
- Strominger'86 (Hull'86): compactification of heterotic strings with nonzero flux $H \rightsquigarrow$ Strominger system
 - warp product instead of product
 - maximally symmetric 4D space-time
 - $\mathcal{N}=1$ SUSY
 - anomaly cancellation
- Li-Yau'05: reformulation of Strominger system

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

3 / 29

Pirsa: 15110057 Page 4/28

Strominger system

- (X, ω, Ω) : Hermitian 3-fold with canonical bundle globally trivialized by Ω
- $(E, h) \rightarrow X$: holomorphic Hermitian vector bundle
- R, F: curvature forms of $T^{1,0}X$ and E
- α' -expansion to the first order.

The Strominger system consists of three equations

$$F \wedge \omega^2 = 0, \quad F^{0,2} = F^{2,0} = 0,$$
 $i\partial \overline{\partial} \omega = \frac{\alpha'}{4} (\operatorname{Tr}(R \wedge R) - \operatorname{Tr}(F \wedge F)),$ $\mathrm{d}(\|\Omega\|_{\omega} \cdot \omega^2) = 0.$

The system makes sense for non-Kähler backgrounds!

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Observations

$$F \wedge \omega^2 = 0, \quad F^{0,2} = F^{2,0} = 0,$$
 (1)

$$dH = i\partial \overline{\partial}\omega = \frac{\alpha'}{4}(\operatorname{Tr}(R \wedge R) - \operatorname{Tr}(F \wedge F)), \tag{2}$$

$$d(\|\Omega\|_{\omega} \cdot \omega^2) = 0. \tag{3}$$

Definition

On a complex *n*-fold, a Hermitian metric ω is called a *balanced metric* if $d(\omega^{n-1}) = 0$.

- Eq. (3): ω is conformal to a balanced metric $\widetilde{\omega}$, i.e., $d(\widetilde{\omega}^2) = 0 \rightsquigarrow$ topological obstructions (Michelsohn'82)
- Eq. (1): existence of Hermitian-Yang-Mills connection is equivalent to the stability of E (Li-Yau'87)
- Eq. (2): anomaly cancellation, the hardest part

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Strominger system

- (X, ω, Ω) : Hermitian 3-fold with canonical bundle globally trivialized by Ω
- $(E, h) \rightarrow X$: holomorphic Hermitian vector bundle
- R, F: curvature forms of $T^{1,0}X$ and E
- α' -expansion to the first order.

The Strominger system consists of three equations

$$F \wedge \omega^2 = 0, \quad F^{0,2} = F^{2,0} = 0,$$
 $i\partial \overline{\partial} \omega = \frac{\alpha'}{4} (\operatorname{Tr}(R \wedge R) - \operatorname{Tr}(F \wedge F)),$ $\mathrm{d}(\|\Omega\|_{\omega} \cdot \omega^2) = 0.$

The system makes sense for non-Kähler backgrounds!

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Observations

$$F \wedge \omega^2 = 0, \quad F^{0,2} = F^{2,0} = 0,$$
 (1)

$$dH = i\partial \overline{\partial}\omega = \frac{\alpha'}{4}(\operatorname{Tr}(R \wedge R) - \operatorname{Tr}(F \wedge F)), \tag{2}$$

$$d(\|\Omega\|_{\omega} \cdot \omega^2) = 0. \tag{3}$$

Definition

On a complex *n*-fold, a Hermitian metric ω is called a *balanced metric* if $d(\omega^{n-1}) = 0$.

- Eq. (3): ω is conformal to a balanced metric $\widetilde{\omega}$, i.e., $d(\widetilde{\omega}^2) = 0 \rightsquigarrow$ topological obstructions (Michelsohn'82)
- Eq. (1): existence of Hermitian-Yang-Mills connection is equivalent to the stability of E (Li-Yau'87)
- Eq. (2): anomaly cancellation, the hardest part

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Known solutions

$$F \wedge \omega^2 = 0, \quad F^{0,2} = F^{2,0} = 0,$$
 $i\partial \overline{\partial} \omega = \frac{\alpha'}{4} (\operatorname{Tr}(R \wedge R) - \operatorname{Tr}(F \wedge F)),$ $\mathrm{d}(\|\Omega\|_{\omega} \cdot \omega^2) = 0.$

- ullet Kähler solution: $\mathrm{d}\omega=0$, use Ricci-flat metric (Yau'77) and take $E=T^{1,0}X$
- Strominger'86: (infinitesimal) perturbative solutions from Kähler solution, orbifolded solutions
- Li-Yau'05: smooth perturbative solutions from Kähler solution Andreas-Garcia-Fernandez'12: more general perturbations

4 ロ ト 4 団 ト 4 豆 ド 4 豆 ト 「豆 「 からで

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Known solutions cont'd

- Fu-Yau'08: non-Kähler solutions on certain T² bundle over K3 surfaces (Goldstein-Prokushkin'04), by reduction to K3 Fu-Tseng-Yau'09 & Becker-Tseng-Yau'09: similar local models M-theory dual picture
- On nilmanifolds: Fernández-Ivanov-Ugarte-Villacampa'09, Grantcharov'11, Fernández-Ivanov-Ugarte-Vassilev'14, Ugarte-Villacampa'14, Ugarte-Villacampa'15 etc.
- Carlevaro-Israël'10: on blow-up of conifold
- F.-Yau'15: on (quotients of) $SL(2,\mathbb{C})$

All known solutions have certain special structure. No general theorem has been proved.

- (B) (B) (B) (B) (B) (O) (

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

7 / 29

Pirsa: 15110057 Page 10/28

Motivation from math

conifold transition

- Candelas-de la Ossa'90: Ricci-flat Kähler metrics on conifolds
 In order to work in non-Kähler category, we may want to solve Strominger system on conifolds.
 - smoothed conifold \cong $SL(2,\mathbb{C})$: F.-Yau'15
 - ullet resolved conifold $\mathcal{O}(-1,-1)$: F.'15, the main theme of this talk

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Pirsa: 15110057

Motivation from math cont'd

Conifold transition (Clemens'83, Friedman'86)

Conjecture (Reid'87)

Any two reasonably nice CY3 can be connected via a sequence of conifold transitions.

Strominger system as guidance to canonical metrics on non-Kähler CY3, may be useful to understand the moduli of CY3

Teng Fei (MIT)

Strominger system

Nov. 23, 2015 9 /

Pirsa: 15110057 Page 13/28

Calabi's construction

First trial: find solutions to Strominger system on compact spaces **Need**: compact non-Kähler CY 3-fold admitting balanced metric

Construction (Calabi'58)

Identify \mathbb{R}^7 with $\mathrm{Im}(\mathbb{O})$. For any immersed oriented hypersurface M in \mathbb{R}^7 , we define $J:TM\to TM$ by

Construction

$$Jv = \nu \times v$$

where ν is the unit normal, \times is the cross product on $\mathrm{Im}(\mathbb{O})$. Then J is an almost complex structure and M has a natural SU(3)-structure.

Theorem (Calabi'58)

Let $\Sigma_g \subset T^3$ be an oriented minimal surface of genus g in flat T^3 , and take $M = \Sigma_g \times T^4 \subset T^3 \times T^4$. Then the above constructed J is in fact integrable and (M, J) is non-Kähler.

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Construction

Calabi's construction cont'd

Remark

- Minimal Σ_g in T^3 exists for all $g \geq 3$.
- The projection $M \to \Sigma_g$ is holomorphic.
- Calabi'58 used this construction to give an example that c_1 depends on the complex structure.
- Gray'69 generalized Calabi's construction to manifolds with vector cross product. $\mathbb{R}^7 \rightsquigarrow 7$ -manifolds with G_2 -structure. $T^4 \rightsquigarrow any$ hyperkähler 4-manifold. Moreover Gray showed that the natural metric on M is balanced.
- F.'15 shows that M has trivial canonical bundle.

4 ロ ト 4 回 ト 4 恵 ト 4 恵 ト 1 更 1 9 Q C

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

The conformal balanced equation

Notations:

- Gauss map: $\nu = (\alpha, \beta, \gamma) : \Sigma_g \to S^2 \subset \mathbb{R}^3$
- hyperkähler structure on T^4 : ω_I , ω_J and ω_K
- induced metric on Σ_g : ω_{Σ_g}
- induced balanced metric on M: $\omega_0 = \omega_{\Sigma_g} + \alpha \omega_I + \beta \omega_J + \gamma \omega_K$
- holomorphic (3,0)-form Ω satisfies $\|\Omega\|_{\omega_0}=\mathrm{const}$

Hence (M, ω_0, Ω) solves the conformally balanced equation

$$d(\|\Omega\|_{\omega_0}\cdot\omega_0^2)=0.$$

Observation:

$$\omega_f = e^{2f}\omega_{\Sigma_g} + e^f(\alpha\omega_I + \beta\omega_J + \gamma\omega_K)$$

solves the conformally balanced equation for any $f:\Sigma_{\mathbf{g}} o\mathbb{R}.$

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Pirsa: 15110057

Degeneracy

We need

$$e^{2f} = \frac{\alpha' \|\mathrm{d}\nu\|^2}{8}.$$

However ν is a branched cover, so $\mathrm{d}\nu$ vanishes at finitely many points. Hence the solution metric

$$\omega_f = e^{2f} \omega_{\Sigma_g} + e^f (\alpha \omega_I + \beta \omega_J + \gamma \omega_K)$$

is degenerate (not too bad) along the the fibers over these branched points.

Problem is caused by taking branched cover!

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Hyperkähler 4-manifolds

Definition

A hyperkähler manifold is a Riemannian manifold (M,g) with compatible complex structures I, J and K with $I^2 = J^2 = K^2 = IJK = -1$ such that (M,g) is Kähler with respect to all of I, J and K.

Examples in real dimension 4:

- compact: T^4 and K3 surface
- noncompact: Gravitational instantons (Ricci-flat ALE spaces) etc.

Important facts:

- for any $(\alpha, \beta, \gamma) \in S^2$, $\alpha I + \beta J + \gamma K$ is a complex structure
- hyperkähler 4-manifolds are anti-self-dual

4 ロ ト (日) ト (国) ト (国) 「 (国) ((国) ト (国) ト (国) ((国) ト (国) ((国) ト (国) ((国) ((国) ((国) ((国) ((G) ((G) ((G) ((G) ((G) ((G) ((G) ((G) ((G

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Twistor spaces

Construction (Penrose'67, Atiyah-Hitchin-Singer'78, HKLR'87)

Let N be a hyperkähler manifold, the twistor space of N is the product $Z(N) = N \times \mathbb{P}^1$ with the almost complex structure

$$\mathfrak{I}_{(\mathsf{x},\zeta)} = \alpha I_{\mathsf{x}} + \beta J_{\mathsf{x}} + \gamma K_{\mathsf{x}} \oplus j_{\zeta},$$

where j is the standard complex structure on \mathbb{P}^1 with coordinate ζ given by

$$(\alpha, \beta, \gamma) = \left(\frac{1 - |\zeta|^2}{1 + |\zeta|^2}, \frac{\zeta + \overline{\zeta}}{1 + |\zeta|^2}, \frac{i(\overline{\zeta} - \zeta)}{1 + |\zeta|^2}\right).$$

Important facts:

- J is integrable
- ullet the projection $\pi: Z(N)
 ightarrow \mathbb{P}^1$ is holomorphic
- $\wedge^2 T^* F \otimes \pi^* \mathcal{O}(2)$ has a global section which defines a holomorphic symplectic form on each fiber of π

Teng Fei (MIT

Strominger system

Nov. 23, 2015

Pirsa: 15110057

M as pullback

Key observation:

M fits in the pullback square

Notice that Σ_g is minimal in T^3 implies that ν is holomorphic. This observation leads to many generalizations of Calabi-Gray's construction.

- (B) (B) (B) (B) (B) (O) (

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Geometric construction

Recall that the problem of solving Strominger system on M comes from taking branched cover. With our new interpretation of M as pullback, it is natural to consider Strominger system on the twistor space Z(N).

Problem: A twistor space can never have trivial canonical bundle! **Remedy**: Remove a closed subset from Z(N) to make it a noncompact

Calabi-Yau

Construction

Let N be a hyperkähler 4-manifold and let $\pi: Z(N) \to \mathbb{P}^1$ be its associated twistor fibration. Let F be a fiber of π , then $X := Z(N) \setminus F$ has trivial canonical bundle.

WLOG, we may assume the fiber is over $\zeta = \infty$, then a holomorphic (3,0)-form Ω on X can be written down explicitly

$$\Omega = (-2\zeta\omega_I + (1-\zeta^2)\omega_J + i(1+\zeta^2)\omega_K) \wedge d\zeta.$$

4 ロ ト 4 回 ト 4 恵 ト 4 恵 ト 1 恵 1 り 9 (

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Examples and the main result

Fibration structure

Construction

Some examples:

- $N = \mathbb{R}^4$, then X is biholomorphic to \mathbb{C}^3
- $N = T^*\mathbb{P}^1$ with Eguchi-Hanson geometry and carefully chosen F, then X is biholomorphic to $\mathcal{O}(-1,-1)$ (Hitchin'81)

Main result:

Theorem (F.'15)

Let N and X be described above, then a solution to Strominger system on X can be written down explicitly.

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

The conformally balanced equation

Strategy is like before. We begin with the equation

$$d(\|\Omega\|_{\omega}\cdot\omega^2)=0.$$

Check that

$$\omega_{\mathsf{g},h} = \frac{e^{2h+\mathsf{g}}}{(1+|\zeta|^2)^2}(\alpha\omega_{\mathsf{I}} + \beta\omega_{\mathsf{J}} + \gamma\omega_{\mathsf{K}}) + e^{2\mathsf{g}}\omega_{\mathrm{FS}}$$

solves the conformally balanced equation for any $g:\mathbb{C} o \mathbb{R}$ and $h: \mathcal{N} \to \mathbb{R}$. Again, we are making use of the fibration $\pi: X \to \mathbb{C}$.

Notation: $s:=1+|\zeta|^2$, $\omega':=\alpha\omega_I+\beta\omega_J+\gamma\omega_K$ and $B:=s^3/e^{2h+g}$

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

A final remark

In order for $(\partial \overline{\partial} \log B)^2 = 0$, h does not have to be a constant. In the case that $N = \mathbb{R}^4$, we can also take h such that

$$\exp(h) = c \cdot ||x||^{-3}.$$

This gives a solution of Strominger system on $\mathbb{C} \times (\mathbb{C}^2 \setminus \{0\})$. In general I do not know how to find such h because the lack of explicit knowledge about hyperkähler metrics.

4 □ > 4 @ > 4 를 > 4 를 > 를 9 Q(

Teng Fei (MIT)

Strominger system

Nov. 23, 2015

Conclusion

Conclusion

For any hyperkähler 4-manifold N, we know that $X = Z(N) \setminus F$ is a noncompact CY3. We can construct explicit solutions to the Strominger system on X. Such manifolds include \mathbb{C}^3 and $\mathcal{O}(-1,-1)$ as special examples.

Hopefully these local models can be used in gluing to give more general solutions.

Teng Fer (MIT

Strominger system

Nov. 23, 2015

28 / 29

Pirsa: 15110057 Page 27/28

Pirsa: 15110057 Page 28/28