Title: Localization on twisted spheres and supersymmetric GLSM in 2d

Date: Oct 26, 2015 11:00 AM

URL: http://pirsa.org/15100118

Abstract: I will revisit the A-twisted gauged linear sigma model (GLSM) in the case of (2,2) supersymmetry in two dimensions, and its Omega-background deformation. Exact results for correlation functions on the sphere can be obtained in terms of Jeffrey-Kirwan residues on the Coulomb branch, which has a number of interesting applications. I will also explain an interesting generalization to (0,2) supersymmetric GLSMs of a special type.

Pirsa: 15100118 Page 1/47

Pirsa: 15100118 Page 8/47

Pirsa: 15100118 Page 11/47

Supersymmetric backgrounds on S2

On the sphere, we can have:

$$\frac{1}{2\pi} \int_{S^2} dA^R = 0 , \qquad \frac{1}{2\pi} \int_{S^2} dC = \frac{1}{2\pi} \int_{S^2} d\tilde{C} = 1$$

This was studied in detail in [Doroud, Le Floch, Gomis, Lee, 2012; Benini, Cremonesi, 2012]. In this case, the R-charge can be arbitrary but the real part of the central charge, $Z+\tilde{Z}$, is constrained by Dirac quantization.

The second possibility is

$$\frac{1}{2\pi} \int_{S^2} dA^R = 1 , \qquad \frac{1}{2\pi} \int_{S^2} dC = \frac{1}{2\pi} \int_{S^2} d\tilde{C} = 0$$

This is the case of interest to us. Note that the R-charges must be integers, while Z, \tilde{Z} can be arbitrary.

Cyril Closset (SCGP)

2d localization on twisted spheres

PI, Oct 26, 2015 10 / 45

Pirsa: 15100118 Page 15/47

The Coulomb branch formula

The remaining steps are similar to previous works [Benini, Eager, Hori, Tachikawa, 2013; Hori, Kim, Yi, 2014]. We find:

$$\langle \mathcal{O}_{N,S}(\sigma) \rangle = \frac{1}{|W|} \sum_{k} \oint_{JK} \prod_{a=1}^{\text{rank}(G)} \left[d\hat{\sigma}_a \, q_a^{k_a} \right] \, Z_k^{1-\text{loop}}(\hat{\sigma}) \, \mathcal{O}_{N,S}\left(\hat{\sigma} \mp \frac{1}{2} \epsilon_{\Omega} k \right)$$

- ightharpoonup |W| denotes the order of the Weyl group.
- ► The contour is determined by a Jeffrey-Kirwan residue.
- ► The result depends on the FI parameters explicitly and through the definition of the contour.
- ► The sum is over all fluxes k's. However, only some chambers in $\{k_a\}$ effectively contribute residues.

Cyril Closset (SCGP)

2d localization on twisted spheres

Pl, Oct 26, 2015 24 / 45

Pirsa: 15100118 Page 25/47

The Coulomb branch formula

The remaining steps are similar to previous works [Benini, Eager, Hori, Tachikawa, 2013; Hori, Kim, Yi, 2014]. We find:

$$\langle \mathcal{O}_{N,S}(\sigma) \rangle = \frac{1}{|W|} \sum_{k} \oint_{JK} \prod_{a=1}^{\operatorname{rank}(G)} \left[d\hat{\sigma}_{a} \, q_{a}^{k_{a}} \right] \, Z_{k}^{1-\operatorname{loop}}(\hat{\sigma}) \, \mathcal{O}_{N,S}\left(\hat{\sigma} \mp \frac{1}{2} \epsilon_{\Omega} k\right)$$

- ightharpoonup |W| denotes the order of the Weyl group.
- ► The contour is determined by a Jeffrey-Kirwan residue.
- ► The result depends on the FI parameters explicitly and through the definition of the contour.
- ► The sum is over all fluxes k's. However, only some chambers in $\{k_a\}$ effectively contribute residues.

Cyril Closset (SCGP)

2d localization on twisted spheres

Pl. Oct 26, 2015 24 / 45

Pirsa: 15100118 Page 27/47

A-model Coulomb branch formula ($\epsilon_{\Omega}=0$)

In favorable cases, one can do the sum over fluxes explicitly:

$$\langle \mathcal{O}(\sigma) \rangle_{0} = \frac{1}{|W|} \oint_{JK} \prod_{a=1}^{\operatorname{rank}(G)} \left[d\hat{\sigma}_{a} \frac{1}{1 - e^{2\pi i \partial_{\sigma_{a}} \hat{W}_{\text{eff}}}} \right] Z_{0}^{1-\operatorname{loop}}(\hat{\sigma}) \mathcal{O}(\hat{\sigma})$$

Here \hat{W}_{eff} is the one-loop effective twisted superpotential. Finally, if the critical locus

$$e^{2\pi i\partial_{\sigma_a}\hat{W}_{\text{eff}}} = 1, \qquad \sigma_a \neq \sigma_b \text{ (if } a \neq b)$$

consists of isolated points (such as typically happens for massive theories), we can write the contour integral as

$$\langle \mathcal{O}(\sigma) \rangle_0 = \sum_{\hat{\sigma}^* \mid d\hat{W} = 0} \frac{Z_0^{1 - \text{loop}}(\hat{\sigma}^*) \mathcal{O}(\hat{\sigma}^*)}{H(\hat{\sigma}^*)} , \qquad H = \det \partial_{\sigma_a} \partial_{\sigma_b} \hat{W}$$

This same formula appeared in [Nekrasov, Shatashvili, 2014] and also in

[Melnikov, Plesser, 2005].

Cyril Closset (SCGP)

2d localization on twisted spheres

PI, Oct 26, 2015

U(1) examples

Example 1. In the $\mathbb{C}P^{n-1}$ model, we have

$$\langle \mathcal{O}_{N,S}(\sigma) \rangle = \sum_{k=0}^{\infty} q^k \oint d\hat{\sigma} \prod_{p=0}^k \prod_{i=1}^n \frac{1}{\hat{\sigma} - m_i - k/2 + p} \mathcal{O}\left(\hat{\sigma} \mp \frac{k}{2}\right)$$

with m_i the twisted masses coupling to the SU(n) flavor symmetry.

In the A-model limit and with $m_i = 0$, this simplifies to

$$\langle \mathcal{O}(\sigma) \rangle_{\epsilon_{\Omega}=0} = \oint d\hat{\sigma} \left(\frac{1}{1 - q\hat{\sigma}^{-n}} \right) \frac{\mathcal{O}(\hat{\sigma})}{\hat{\sigma}^{n}} = \oint d\hat{\sigma} \frac{\mathcal{O}(\hat{\sigma})}{\hat{\sigma}^{n} - q}$$

This reproduces known results.

Cyril Closset (SCGP)

2d localization on twisted spheres

PI, Oct 26, 2015 29 / 45

Pirsa: 15100118 Page 29/47

Example 2. For the quintic model, we have

$$\langle \mathcal{O}_N(\sigma) \rangle = \frac{1}{\epsilon_{\Omega}^3} \sum_{k=0}^{\infty} q^k \oint ds \frac{\prod_{l=0}^{5k} (-5s-l)}{\prod_{p=0}^k (s+p)^5} \mathcal{O}(\epsilon_{\Omega} s)$$

In the A-model limit, we obtain

$$\langle \mathcal{O}(\sigma) \rangle_{\epsilon_{\Omega}=0} = \sum_{k=0}^{\infty} (-5^{5}q)^{k} \oint d\hat{\sigma} \frac{5\hat{\sigma}\mathcal{O}(\hat{\sigma})}{\hat{\sigma}^{5}} = \frac{5}{1+5^{5}q} \oint d\hat{\sigma} \frac{\mathcal{O}(\hat{\sigma})}{\hat{\sigma}^{4}}$$

For any ϵ_{Ω} , we find $\langle \sigma^n \rangle = 0$ if n = 0, 1, 2, and

$$\langle \sigma^3 \rangle = \frac{5}{1 + 5^5 q}, \qquad \langle \sigma^4 \rangle = 10 \epsilon_{\Omega} \frac{5^5 q}{(1 + 5^5 q)^2}, \dots$$

in perfect agreement with [Morrison, Plesser, 1994].

PI, Oct 26, 2015 30 / 4

Cyril Closset (SCGP)

2d localization on twisted spheres

Pirsa: 15100118 Page 30/47

Non-Abelian examples

For simplicitly, let us focus on $\epsilon_{\Omega} = 0$, the A-model.

Example 3. For the Grassmanian model, the residue formula gives

$$\langle \mathcal{O} \rangle_0 = \sum_{\mathbf{k} \in \mathbb{Z}_{\geq 0}} q^{\mathbf{k}} \mathcal{Z}_k(\mathcal{O}) ,$$

with

$$\mathcal{Z}_{k} = \frac{1}{N_{c}!} \sum_{k_{a} \mid \sum_{a} k_{a} = k} \frac{(-1)^{2\rho_{W}(k)}}{(2\pi i)^{N_{c}}} \oint d^{N_{c}} \sigma \frac{\prod_{a,b=1}^{N_{c}} (\sigma_{a} - \sigma_{b})}{\prod_{a=1}^{N_{c}} \prod_{i=1}^{N_{f}} (\sigma_{a} - m_{i})^{1+k_{a}}} \mathcal{O}(\sigma) .$$

Here m_i are twisted masses, corresponding to a $SU(N_f)$ -equivariant deformation of $Gr(N_c, N_f)$.

For $m_i=0$, the numbers $\mathcal{Z}_{\mathbf{k}}$ are the g=0 Gromov-Witten invariants. PI, Oct 26, 2015 31 / 45

Cyril Closset (SCGP)

2d localization on twisted spheres

Pirsa: 15100118 Page 32/47

Example 3, continued. This simplifies explicit formulas found in the math literature. For instance, one finds [C.C., N. Mekareeya, work in progress]

$$\langle u_1(\sigma)^p\rangle_0=\delta_{p,(N_f-N_c)N_c+kN_f}\;q^k\;\deg(K_{N_f-N_c,N_c}^k)$$

with $deg(K_{N_f-N_c,N_c}^k)$ given by

[Ravi, Rosenthal, Wang, 1996]

$$(-1)^{k(N_C+1)+\frac{1}{2}N_C(N_C-1)}[N_C(N_f-N_C+\Bbbk N_f)]! \sum_{k_a|\sum_a k_a=\Bbbk} \sum_{\sigma\in S_{N_C}} \prod_{j=1}^{N_C} \frac{1}{(N_f-2N_C-1+j+\sigma(j)+k_jN_f)!} \,,$$

Example: for $N_c = 2$, $N_f = 5$, we have the non-vanishing correlators:

$$\langle u_1^6 \rangle_0 = 5$$
, $\langle u_1^{11} \rangle_0 = 55 q$, $\langle u_1^{16} \rangle_0 = 610 q^2$, $\langle u_1^{21} \rangle_0 = 6765 q^3$, ...

This generalizes to the computation of GW invariants of non-CY target space, and is thus complementary of the techniques of [Jockers, Kumar, Lapan, Morrison, Romo, 2012] valid for conformal models.

PI, Oct 26, 2015 32 / 45

Cyril Classet (SCGP)

2d localization on twisted spheres

Pirsa: 15100118 Page 33/47

Example 3, continued. This simplifies explicit formulas found in the math literature. For instance, one finds [C.C., N. Mekareeya, work in progress]

$$\langle u_1(\sigma)^p\rangle_0=\delta_{p,(N_f-N_c)N_c+kN_f}\,q^k\,\deg(K_{N_f-N_c,N_c}^k)$$

with $deg(K_{N_f-N_c,N_c}^k)$ given by

[Ravi, Rosenthal, Wang, 1996]

$$(-1)^{k(N_C+1)+\frac{1}{2}N_C(N_C-1)}[N_C(N_f-N_C+\Bbbk N_f)]! \sum_{k_a|\sum_a k_a=\Bbbk} \sum_{\sigma\in S_{N_C}} \prod_{j=1}^{N_C} \frac{1}{(N_f-2N_C-1+j+\sigma(j)+k_jN_f)!}\,,$$

Example: for $N_c = 2, N_f = 5$, we have the non-vanishing correlators:

$$\langle u_1^6 \rangle_0 = 5$$
, $\langle u_1^{11} \rangle_0 = 55 q$, $\langle u_1^{16} \rangle_0 = 610 q^2$, $\langle u_1^{21} \rangle_0 = 6765 q^3$, ...

This generalizes to the computation of GW invariants of non-CY target space, and is thus complementary of the techniques of [Jockers, Kumar, Lapan, Morrison, Romo, 2012] valid for conformal models. Pl, Oct 26, 2015 32 / 45

Cyril Closset (SCGP)

2d localization on twisted spheres

Pirsa: 15100118 Page 34/47

Example 3, continued. This simplifies explicit formulas found in the math literature. For instance, one finds [C.C., N. Mekareeya, work in progress]

$$\langle u_1(\sigma)^p\rangle_0=\delta_{p,(N_f-N_c)N_c+kN_f}\;q^k\;\deg(K_{N_f-N_c,N_c}^k)$$

with $deg(K_{N_f-N_c,N_c}^k)$ given by

[Ravi, Rosenthal, Wang, 1996]

$$(-1)^{k(N_C+1)+\frac{1}{2}N_C(N_C-1)}[N_C(N_f-N_C+\Bbbk N_f)]! \sum_{k_a|\sum_a k_a=\Bbbk} \sum_{\sigma \in S_{N_C}} \prod_{j=1}^{N_C} \frac{1}{(N_f-2N_C-1+j+\sigma(j)+k_jN_f)!} \,,$$

Example: for $N_c = 2, N_f = 5$, we have the non-vanishing correlators:

$$\langle u_1^6 \rangle_0 = 5$$
, $\langle u_1^{11} \rangle_0 = 55 q$, $\langle u_1^{16} \rangle_0 = 610 q^2$, $\langle u_1^{21} \rangle_0 = 6765 q^3$, ...

This generalizes to the computation of GW invariants of non-CY target space, and is thus complementary of the techniques of [Jockers, Kumar,

Lapan, Morrison, Romo, 2012] valid for conformal models.

PI, Oct 26, 2015 32 / 45

Cyril Closset (SCGP)

2d localization on twisted spheres

Pirsa: 15100118

Page 35/47

Pirsa: 15100118 Page 36/47

A priori, the above would not generalize to (0,2) theories, which only have two right-moving supercharges:

$$\{Q_+, \tilde{Q}_+\} = -4P_{\bar{z}}.$$

Half-BPS operators are \tilde{Q}_+ -closed, and generally do not form a ring but a chiral algebra:

$$\mathcal{O}_a(z)\mathcal{O}_b(0) \sim \sum_c \frac{f_{abc}}{z^{s_a+s_b-s_c}} \mathcal{O}_c(z)$$
,

In some favorable cases with an extra $U(1)_L$ symmetry, there exists a subset of the \mathcal{O}_a , of spin s=0, with trivial OPE. These pseudo-chiral rings are known as "topological heterotic rings". [Adams, Distler, Ernebjerg, 2006]

Cyril Closset (SCGP)

2d localization on twisted spheres

PI, Oct 26, 2015 35 / 45

Page 38/47

Theories with a (2,2) locus and A/2-twist

We assign the *R*-charges:

$$R_{A/2}[\Sigma] = 0$$
, $R_{A/2}[\Phi_i] = r_i$, $R_{A/2}[\Lambda_i] = r_i - 1$,

which is always anomaly-free.

We can define the theory on S^2 (with any metric) by a so-called half-twist:

 $S = S_0 + \frac{1}{2} R_{A/2} \; ,$

preserving one supercharge $\tilde{\mathcal{Q}}\sim \tilde{\mathcal{Q}}_+$. The *R*-charges r_i must be integers (typically, $r_i=0$ or 2). "Pseudo-topological."

Incidentally, half-twisting is the only way to preserve supersymmetry on the sphere, unlike for (2,2) GLSM.

Cyril Closset (SCGP)

2d localization on twisted spheres

PI, Oct 26, 2015 37 / 45

Theories with a (2,2) locus and A/2-twist

We assign the *R*-charges:

$$R_{A/2}[\Sigma] = 0$$
, $R_{A/2}[\Phi_i] = r_i$, $R_{A/2}[\Lambda_i] = r_i - 1$,

which is always anomaly-free.

We can define the theory on S^2 (with any metric) by a so-called half-twist:

 $S = S_0 + \frac{1}{2} R_{A/2} \; ,$

preserving one supercharge $\tilde{\mathcal{Q}}\sim \tilde{\mathcal{Q}}_+$. The *R*-charges r_i must be integers (typically, $r_i=0$ or 2). "Pseudo-topological."

Incidentally, half-twisting is the only way to preserve supersymmetry on the sphere, unlike for (2,2) GLSM.

Cyril Closset (SCGP)

2d localization on twisted spheres

PI, Oct 26, 2015 37 / 45

Pirsa: 15100118 Page 42/47

The Coulomb branch of theories with a (2, 2) locus

If we have a generic \mathcal{E}_i potentials, there is a Coulomb branch spanned by the scalar σ in Σ :

$$\sigma = \operatorname{diag}(\sigma_a)$$
.

The matter fields obtain a mass

$$M_{ij} = \partial_j \mathcal{E}_i \big|_{\phi=0} = \sigma_a \, \partial_j E_i^a \big|_{\phi=0} .$$

By gauge invariance, M_{ij} is block-diagonal, with each block spanned by fields with the same gauge charges. We denote these blocks by M_{γ} . (On the (2,2) locus, $M_{ij} = \delta_{ij}Q_i(\sigma)$.)

Let us introduce the notation

$$P_{\gamma}(\sigma) = \det M_{\gamma} \in \mathbb{C}[\sigma_1, \cdots, \sigma_r], \qquad (r = \operatorname{rank}(G))$$

which is a homogeneous polynomial of degree $n_{\gamma} \geq 1$ in σ .

Cyril Closset (SCGP)

2d localization on twisted spheres

Pl, Oct 26, 2015 38 / 45

The Jeffrey-Kirwan-Grothendieck residue

In the (2, 2) case, the Jeffrey-Kirwan residue determined a way to pick a middle-dimensional contour in

$$\mathbb{C}^r - \bigcup_{i \in I} H_i , \qquad I = \{i_1, \cdots, i_s\} \ (s \ge r) , \qquad H_i = \{\sigma_a \mid Q_i(\sigma) = 0\} ,$$

when the integrand has poles on H_i only.

For generic (0,2) deformations, we have an integrand with singularities on more general divisors of \mathbb{C}^r :

$$D_{\gamma} = \{ \sigma_a \, | \, P_{\gamma}(\sigma) = 0 \} \; ,$$

which intersect at the origin only.

Cyril Closset (SCGP)

2d localization on twisted spheres

PI, Oct 26, 2015 40 / 45

Pirsa: 15100118 Page 45/47

 $\mathbb{C}P^1 \times \mathbb{C}P^1$, continued.

We have two sets $\gamma = 1, 2$:

$$\det M_1 = \det(A\sigma_1 + B\sigma_2)$$
, $\det M_2 = \det(C\sigma_1 + D\sigma_2)$.

The Coulomb branch residue formula gives

$$\langle \sigma_1^{p_1} \sigma_2^{p_2} \rangle = \sum_{k_1, k_2 \in \mathbb{Z}} q_1^{k_1} q_2^{k_2} \oint_{JKG} d\sigma_1 d\sigma_2 \frac{\sigma_1^{p_1} \sigma_2^{p_2}}{(\det M_1)^{1+k_1} (\det M_2)^{1+k_2}}$$

This can be checked against independent mathematical computations of sheaf cohomology groups.

This result also implies the "quantum sheaf cohomology relations":

$$\det M_1 = q_1 \; , \qquad \det M_2 = q_2 \; ,$$

in the A/2-ring. This can also be derived from a standard argument on the Coulomb branch. [McOrist, Melnikov, 2008] PI, Oct 26, 2015 44 / 45

Cyril Closset (SCGP)

2d localization on twisted spheres

