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Abstract: <p>l will revisit the A-twisted gauged linear sigma model (GLSM) in the case of (2,2) supersymmetry in two dimensions, and its
Omega-background deformation. Exact results for correlation functions on the sphere can be obtained in terms of Jeffrey-Kirwan residues on the

Coulomb branch, which has a number of interesting applications. | will also explain an interesting generalization to (0,2) supersymmetric GLSMs of
aspecial type.</p>
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GLSM Observables

Consider a GLSM with at least
I east one U(1) factor. We have t
complexified Fl parameter ) T

which is classically marginal in 2d.

Schematically, expectation values of appropriately supersymmetric

local operators O have the expansion

wiT

/L)/ ~ > (/;Z‘,(C}j - (_/ — ¢~
h Lo

A

The 2d instantons are gauge vortices.
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GLSM supersymmetric observables

We consider half-BPS local operators.

r— -
In the N = (2,2) case, we have two choices (up to charge
conjugation):
> [0—,0] = [0+.0] =0, chiralring.
» [0_,0]=[0+,0]=0, twisted chiral ring.
The so-called “twisted” theories [Witten, 1928] efficiently isolate these
subsectors: B- and A-twist, respective

operators commute with a single
o chiral ring, in general. However, some
(2,2) case. We will

In the (0.2) case, half-BPS

supercharge and there is n
interesting models share properties with the
discuss them in the second part of the talk.

2d |ocalization on twisted spheres PI, Oct 26, 2015
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1) . ¢
S¢, Correlators for (2,2) theories

We will consider ¢ ' ' '
orrelations of twisted chiral ring opera
()-deformed sphere, -
(O)s2 -

This Q-background constitutes a one-parameter deformation of the
A-twist at genus zero.

We will derive a formula for GLSM supersymmetric observables on S5
of the schematic form:

/

(O)= S— q (.-{ (!"rrzll'lm”(rr}t){rr) :
P »
k

JC

s results simplifies previous
5 and generalizes

Szenes, Vergne, 200

valid for any standard GLSM. Thi
Computations [Morrison, Plesser 1994
them 1o non-Abelian theories.
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"y . ¢ ;
S:_ correlators for (2.2) theories

0O

We will consider ¢ ati ' '
orrelations of twisted chiral ring operat
()-deformed sphere, o
(O)s2 -

This Q-background constitutes a one-parameter deformation of the
A-twist at genus zero.

We will derive a formula for GLSM supersymmetric observables on 55
of the schematic form:

(O) = Z q’" j‘{ (/"rrZil'h“’P(rr} O(a) .
T A

s results simplifies previous

valid for any standard GLSM. Thi |
| and generalizes

COFﬂpUt&tiOﬂS [Morrison, P! 1994: Szenes, Vergne, 2003

them to non-Abelian theories.
Pl. Oct 26, 2015
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Some further motivations

In field theory:

» These 2d N = (2,2) theories appear on the worldvolume of
surface operators in 4d N = 2 theories.
» Our 2d setup can also be uplifted to 4d V' =1 on S2x T2

Willett AndcE

=
i, £V i3

™ Chamir 2013 o g - 1.1
[C.C., Shamir, 2013, Benini, Zafiaroni 2015, Gadde, Razamat, Wille

W bSey WL

In string theory or “quantum geometry”.
). New

merative geometry.

» Think in terms of a target space X, with & ~ vol(Xy

localization results can give new tools for enu

Mievtamm Reama 20121
orrison, Romo, 2012]

[Jockers, Kumar, Lapan, Morris
» The (0.2) results are relevant for heterotic string compactifications.
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Some further motivations

In field theory:

» These 2d N = (2,2) theories appear on the worldvolume of
surface operators in 4d N = 2 theories.

» Our 2d setup can also be uplifted to 4d

\ Clam - N1 -
[C.C., Shamir, 2013, Benini. Zaffaroni, 2015, Gadde, Razamat
- ' i o1 &\ oy it CAVA A (f=FA-{gal=1 LA AL

N =10onS*xT>

1 M=+ DA4E
Nilleot ’ E

In string theory or “quantum geometry”.

» Think in terms of a target space X, with & ~ vol(Xy). New
localization results can give new tools for enumerative geometry.

AR oers &/ b - Ly 4]
Morrison, Romo, 2012]

eterotic string compactifications.

[Jockers, Kumar, Lapan

» The (0.2) results are relevant for h
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Qutline

2d localization on twisted spheres

Cyril Clossel (SCGP)

Pirsa: 15100118 Page 8/47



Outline

Generalization to (som

d spheres
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Curved-space (2.2
Space (2, 2) supersymmetry

The first step i '

i es%:-i to define the theory of interest in curved space, while

e ®) : e supersymmetry. A systematic way to do ‘this ié b
pling to background supergravity. [Festuccia, Seiberg, 2011 /

Assumption:
mption: The theory possesses a vector-like R-symmetry, Ry =R

In that case, we have:

(¢
/‘” J 4

A (R)
Ay’ s

metric background corresponds to non-trivial solution of

A supersym
ed Killing spinor equations, o¢¥yu = 0.

the generaliz

PI, Oct 26 2015
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Curved-space (2,2) supersymmetry

The firsF step is to define the theory of interest in curved space, while
preserving some supersymmetry. A systematic way to do this is by
coupling to background supergravity. [Festuccia, Seiberg, 2011]

Assumption: The theory possesses a vector-like R-symmetry, Ry = R.

In that case, we have:

'”\')
/[; 4

y (R)
{“a!r .

ground correspu fis to anon

A supersymmetric back . -
: pinor equations, 60, =0.

the generalized Killing s
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Curved-space (2.2) super

Symi
The first
step is to define the theory of interest in curved space, while

preserving some su
persymmetry. A systematic w
coupling to background supergravity. y* :—-.-L Se dy /0o ik

Assumption: i
mption: The theory possesses a vector-like R-symmelry, kv = R

In that case, we have:

(R)

/F

({\)
T

ponds to & non-trivial solution of

nd corres

A supersymmetnc backgrou
r equations, o¢¥u = 0-

the genelalized Killing spino
24 localizalion on twisted spheres PI, Oct 26, 2015
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Supersymmetric backgr
On the sphere, we can have:

—
-

ThlS was studied in detail in [Doroud, Le Floch, Gomis, Lee
2012]. In this case, the R-charge can be a:bltrary but Lhe real part of the

central charge, Z + Z, is constrained by Dirac quantization.

The second possibility is

. . [ . :
1__/ e = / e =11
.’J_T;-_l\h.T 2]—-‘\}.1

R-charges must be

se of interest to US. Note that the

This is the ca .
be arbitrary.

integers, while Z. Z can

2d localization on W isted spheres

Cyril Clossel (SCGP)
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Equivariant A-twist, a.k.a.

Consider this latter case. We preserve two supercharges if the metric
on S- has a U(1) isometry with Killing vector V¥. This gives a
one-parameter deformation of the A-twist:

Q*=0, @’=0, {QQ}=Z+ealy.

-

The supergravity background reads:

l

f D | v ,’
V() e ( = . fc;l’ '
TR ; “p = H L

ds” = /8 |z|*)dzdz .
2014] ite down an
Using the general results of [C.C., Cremonesi, 2014], We cafl write d y
supersymmetric Lagrangian we want.

P, Oct 26, 2015
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GLSMs: Lightning review

Let us consider 2d A/ = (2.2) supersymmetric GLSM on this S5.

We have the following field content:

» Vector multiplets V, for a gauge group G, with Lie algebra g.

» Chiral multiplets @; in representations 3, of g.

We also have interactions dictated by:
. A superpotential W(®)

» A twisted superpotential W ), where @ C V.

2d localizalion on twisted spheres
Cyril Closse

Page 15/47



Assumption: The classical twisted superpotential is linear in o:

That is, we turn on one Fl parameter for each U(1); factor in G.

The Fl term often runs at one-loop:

/)U H
Tf/{ | = T[/"H.' — = { [(]g }f..”. 5

) o=
e \

If by = 0, We expect an SCFT in infrared.

)4 axial R-symmetry, broken to Zay, Dy @N

This W preserves a U(1)
anomaly if bo # 0-

2d localization on twisted spheres
2d localiz

Cyril Closset (SCGP)
’l
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Examples with G = U(]

}( od « n l - 1 . .
f ample 1: CP"~' model. With » chirals with Q; = 1, r; = 0.
T runs at one-loop (hy = n), and there is a dynamical scale:

A = pgr .

For ¢ >> 0, target space is CP"~'.

— (), and one

The quintic model. 5 chirals x; with @; = 1, ri

Example 2:
chiral p with @, = =5, rp = 2, with a superpotential

W = pF(x;)

F is homogeneous of degree 5.

by = 0. For £ >0 quintic CY3 in CP*.
P|. Oct 26, 2015

ation on twisted spheres
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Pirsa: 15100118
Page 17/47



Pirsa: 15100118

Non-Abelian examples

E:'&amp[e S Grassmanian models. Consider a U(N,) vector multiplet
with N, chirals in the fundamental.

This non-Abelian GLSM flows to the NLoM on the Grassmanian
Gr(N..Nr).

The Grassmanian duality

Gr(N,, Nr) = Gr(Ny — Ne,Ny)

a Seiberg-like duality of the GLSMs.

corresponds to

2d localization on twisted spheres PI, Oct 26, 2015
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Supersymmetric observables

We can insert O() at the north or south poles of 53:
(On(0)Os(a))

This is what we shall compute explicitly, as a function of g and eq.

Note: One can write down a supersymmetric local term:

W= /(/2.\‘{F(a.')R 4 .n) ~ Fw)

Thus, correlators (O) are only defined up to an overall holomorphic

function.

Pl, Oct 26, 2015
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Localizations
Localization principle: For any @ which is Q-closed,

() = (s ) if Sioc = {0; Yiocs
)C | L, 2 [hLJ .

Théerefore,. we ca‘n take‘ ¢ — oo and localize the path integral on the
saddle point configurations of Si.e. The question is how to choose Sige-

We can consider two distinct localizations:

ortices.

» “Higgs branch” localization: Sum over Vv
> “Coulomb branch” localization: Contour integral.
ss the latter. The contour picks ‘poles’
ponding {0 the vortices.

on the Coulomb

We will discu
branch corres

tion on twisted spheres

2d locallzz

Cyril Clossel (SCGP)
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Coulomb branch” localization

Choose:

' -
rZ R, v
e AP

Note: We also localize the matter sector with its standard kinetic term.

The saddles are on the Coulomb branch:
rank(G)

g = diag(ay) .

There is a family of gauge fiel

k= (Kq) € ['gv

2d localization on twisted spheres

Cyril Closset (SCGP)

d saddles for each allowed (GNO) flux:
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In this localization scheme, we also have gaugino zero modes,
A, A = constant. 2

The path integral reduces to a supersymmetric ordinary ints

{O‘\'.S{ *’7} ™~ Z / (“/'\(f,\ / dD / d-c ; (G.0. . AD ) O;, c(ONS)
f . . .

We refrained from integrating over the constant mode of the auxiliary
field D in the vector multiplet.

We have

-, z—-[--]m;i‘.
— p 9%l A

tegrating out the chiral multiplets and
d explicitly by standard techniques.

The one-loop term results from in
the W-bosons. It can be compute

P|. Oct 26, 2015
2d localization on twisted Pl O -
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[ . - .
n this localization scheme, we also have gaugino zero modes,
A, A = constant.

The path integral reduces to a supersymmetric ordir

/ d“d Zi.(6.0.\.\.D) Ons(on.s)

j s K

. <
N / dAdA }f dD

We refrained from integrating over the constant mode of the auxiliary

field D in the vector multiplet.

We have =
- "—k&[ i oop

[ .-./f

The one-loop term results from integrating out the chiral multiplets and
the W-bosons. It can be computed explicitly by standard techniques.

Pl, Oct 26, 2015
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The mb brz f
he Coulomb branch formula

The . - . .
: remaining steps are similar to previous works [Beni
lachikawa, 2013; Hori, Kim, Yi, 2014]. We find: g

» |W| denotes the order of the Weyl group.
offrey-Kirwan residue.

"‘Ilrl"

» The contour is determined by & '
» The result depends on the F| parameter

the definition of the contour.
xes k's. Howev

idues.

s explicitly and through

., The sum is over all flu er, only some chambers in
{A effectively contribute resi

2d locallzz ation on twisted i

Cyril Closset (SCGP)
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| he Coulomb branch formula

The ini e

e remaining steps are similar to previous works [Benini, E

achikawa. 2013: Hori. Kim. Yi. 20141. We find: D g
ori, Kim, Yi, 2014]. We find:

J:(/f}"” (/fJ Z\l _[m"‘f a) (',7_-\- s (ﬁ -+ ;i)f'f_;/{)

» |W| denotes the order of the Weyl group.
» The contour is determined by a Jeffrey-Kirwa

» The result depends on the F| parameters exp

the definition of the contour.
uxes k's. However, onl

» The sum is over all fl
bute residues.

{ka} effectively contri
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The Coulomb branch formula

The ini imi

ik ’remalnmg steps are similar to previous works [Beni

achikawa 2013 Hori Kim. Yi 2C fi g
2013; Hori, Kim, Yi, 2014]. We find:

[W\ denotes the order of the Weyl group.

. The contour is determined by a Jeffrey-Kir
. The result depends on the Fl parameters explic!

the definition of the contour.
fluxes k's. HoweV

esidues.

wan residue.
tly and through

» The sum is over all er, only some chambers in
fka} effectively contribute r
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A-model Coulomb branch formula (eq = 0)

In
favorable cases, one can do the sum over fluxes explicitly:

rank(G)

_ I
Dloho=—a [ ; : 1=loop 5 O (4
( ))n |W| j}fK H (drm 5 (szdﬂa“m] Z“ i?(ﬁ)O(_rrJ

a=|

Here W, is the one-loop effective twisted superpotential. Finally, if the

critical locus

,3.”.1}),,“. l"..':” ks b vy (//
€ IT H G“‘ T f—[, “f (| = )J

consists of isolated points (such as typically happens for massive
theories), we can write the contour integral as

Zi=1%(5%) O/(c”) A
(O(a))o = Z =L H = det 8y, 00, W
a* [dW=0 :

d in [Nekrasov, Shatashvil, 2014) and also in

This same formula appeare

2 i Inikov. Plesser, 2005].
[Melnikov, Ple _— T

Cyril Clossel (SCGP)
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U(1) examples

Example 1. In the CP*~! model, we have

0 Kon
(ON.S(J ) = (Lf il | N e
) Z/ : HH(’I—M,—/{/ZJ.-/JO G:FZ

k=0 p=0 =]

with m; the twisted masses coupling to the SU(n) flavor symmetry.

In the A-model limit and with m; =0, this simplifies to

; [ ( I \ @)
{Orﬂ”)/,:_, N ]‘ da ﬂ]_:_f,f”;":) ST

\

This reproduces Known results.

pl. Oct 26, 2015
2d localization of wisted spheres — ‘ <
Cyril Closset (SCGP) senidd T
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Example 2. For the quintic model, we have

(ON(O‘)) 3 D ds HI 2 B s O(FQ.\'J
28 Hp (J(\ "‘/))

In the A-model limit, we obtain

o0
(O(0)) ¢=0 = ‘2_1( i
i

For any eq, We find (") = 0ifn=0.1,2,and

n perfect agreement with [Vorrison, Plesser, 1994

2d localization on twisted spheres

Cyril Closset (SCGP)
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Example 2. For the quintic model, we have

1
: Z/ ) ds H’ O\ : O(cm)
@’ k=0 Hp n( +Pp)

In the A-model limit, we obtain

ﬁr‘()ir'
= UJ O do- __'f—---) = =
- (st fan5

)/.,, ()
.'{ 0

For any €q, We find (¢") =01ifn =0, 1.2, and

L~
S\ L
Dy "r 55

in perfect agreement with [t

Pirsa: 15100118
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Non-Abelian examples

For simplicitly, let us focus on eq = 0, the A-model.

Example 3. For the Grassmanian model, the residue formula gives

<O>¢J — Z (/[{Z/\(O) ,

ke

L>0

“’L(_P____:” O(a) .
. s

i ’
%= zwp T Tha(oe—m)
kal ' a kg =¥

' 2 SU(N;)-equivariant
are twisted masses, corresponding to a SU(Ny)-€4

Hel'e n; ’
vy

deformation of Gr(N,

ber eo=0 Gromov-Witten invariants.
— (), the num

v 4

S are h

= Z [\ r"’ L £ 1/45
Pl Oct 26, 2019 .

For m;
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. COI t“ U I 1
) e . IS S ifi IC
AW = L) 1E1d J':}‘f'f‘ wark In DI J‘ch 44'

<“[ ((T P =) ¢
)”)0 = O, y—NeNerky 9" deg(KN, . w.)
=NeVe

Wit ; I ] "\ - &
| l (h (L-l( K{\"f ;\'},I\"(‘ ) O[Ve by !F aVil I \ J
P, — M | L \aV -;';‘;il::l"::. .f'.’f":lwr,l- 1996

1
= | +j+ a(j) + kNe)! :

» the non-vanishing correlato

16 21 o
(u ,:J = (:If}u : f__n[ )0 = 06705q ,

GW invariants of non- CY target
of the techniques of [J ar
d for col nformal models.

This generalizes to the computation of

space, c.nd is thus complementary
' Mor 2 vali
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. C 1 tl Ued is S. ifi ici
I llatl l tel atUl e. l Or “ |St8.| |Ce, OI Ie |“ lds ['JC ” MC|’F'I 2eyd ‘.'J'Of‘;" In rlrjq( Jmﬁl

U (o)l =29 '
(1 (7))o Op, (Ny—Ne)Ne+kN; 7" d‘-‘LJ(K,[{f,—f\mv.J

» 3 /1\. .
with d"g(ﬁf\}'-f\’g--f\ﬂ-) given by [Ravi, Rosenthal, Wang, 1996]

1

a 1+
f-—]} o f ‘"|J—-:‘-4 (N, --—I;TI.‘.< N Ne + Nt B— I_I
b P At Y ' " . r "
IS~ bk o CSy. J=1 MY T =N = | 4 j+ a(j) + kNp)!

5. we have the non-vanishing correlators:

Example: for No = 2, N,

\ \ 16, 2
) 2D {q , ./H;fl‘.u =0610q ,

c 1 ——
1)0 =29, (uy Jo =06763¢q ,

(u

This generalizes to the computation of GW nvariants of non-CY target
d is thus complementary of the techniques Of [Jockers, Kumas

. Romo, 2012 valid forconforma! models.
. ik Pl Oct 26, 2015 32/45
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Example 3 '
NCO is simplifi
, continued. This simplifies explicit formulas found in the

math literatu '
re. '
For instance, one finds  [C.C., N. Mekare :
L., N, MeKkareeya, work In progress

(ui(a)P)o=14 “ deg(K
) ){] !)(J\’, i'\ri').‘\r("}‘l\'.l'\} (/I\ ng( /f{! NV, )
o clVe

Wlth dbg( Nc‘-i\'rrJ glven by

Example: for No = 2 ve the non-vanishing correlators

¢ 16y 21 o e
(uy )o _,_(Jlf}ff . {uy )o= 6765¢q

arget

of GW invariants of non-CY't
the techniques of [Joc :
or coni ormcf models.

alizes to the computation
< thus complementary of
Romo, 2012) valid f

LA
1 4 Art '8 =0
Mormsotl, 1 2

I
Lapdll

This gener
Sp&C@,aﬂOl

r“)u]f‘[w,_,fi ( CCF,
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Example 4. For the Redland CY3; model, our formula reads

A )7“-‘:-1\1-‘.'4’\1)

L (64=0) G,

The observables are polynomials in the gauge invariants

uy(o) =Tr(o) =01 + 02, () = Tr(a?) =

The only non-vanishing correlators are given by:

P 42 — 144
(uy (o) = ————— o ol
‘ ‘ | —57g—289¢~+q
14 + I”(m

(o)) =77, _°
R | —3/q — ‘»9(/- +q°

o0
— ;‘IJL" , P " -1(—(7 — /A
") Z { dodor(a) — a5)° ' :
| 21U 2) f(["“rl)r}j“'*'f\':) O(JJ -
)
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N = (0,2) observables

A priori, thf-:* above would not generalize to (0,2) theories, which only
have two right-moving supercharges:

{0.,0.}=—4P:.

=i

Half-BPS operators are 0. -closed, and generally do not form a ring
but a chiral algebra:

c

ith an extra U(1)L symmetry, there exists a

In some favorable cases W |
), with trivial OPE. These pseudo-chlral

subset of the O, of spin s :_( ial OPE
' n as “topological heterotic rings".
i RE - : Adams, Distler, Emebjerg, 2006]

Cyril Clos
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N = (0,2) observables

A priori, thg above would not generalize to (0, 2) theories, which only
have two right-moving supercharges:

{QQ = —4P:.

Half-BPS operators are 0. -closed, and generally do not form a ring
but a chiral algebra:

In some favorable cases with an extra U(1)L symmetry, there c—:x@sla
subset of the O,, of spin s = 0, With trivial OPE. These pseudo-chira
rings are known as “topological heterotic rings".

Cyril Clossel (SCGP)
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Theories with a (2.2) locus and A /2-twist

!S\g;w”efr?q:is OI? (?h 2) supersymmetric GLSMs with a (2, 2) locus
cally, they are determined by th ' B
content: y the following (0, 2) mattel

» A vector multiplet V and a chiral £ in the adjoint of the gauge
group G, with g = Lie(G).
» Pairs of chiral and Fermi multiplets ®; and A;, in representations
R; of g. &
The interactions are encoded in two sets of holomorphic func

the chiral multiplets:

By assumption, we preserve an additional U(1),, symmetry classically,
which leads to & linear in X
We also turn on an F| term 7 for each U(1);in G.

Pirsa: 15100118
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Theories with a (2.2) locus and A /2-twist

We assign the R-charges:
Rap[Z]=0, Rup[@l=ri, Ruiplh]=r-1,
which is always anomaly-free.

We can define the theory on S* (with any metric) by a so-called
half-twist:

T
() - .‘)fj " _’;/\-"‘. 1

‘ <imercharge O ~ O.. The R-charges r; must be
preserving one Supeti rae O ~ Q.. The R-charg

integers (typically, ri = 0 Of J).

“Pseudo-topological.”

" ve supersymmetlry on
Incidentally. half-twisting is the only way to preserve supersymmelry
' 2.2) GLSM.

the sphere, unlike for (2.

Pirsa: 15100118
Page 40/47



Theories with a (2,2) locus and 4 /2-twist

We assign the R-charges:

R_,x ﬁE — (0} R\:‘,(Ilr =1, R- '1\,] = I - 1

which is always anomaly-free.

We can define the theory on S* (with any metric) by a so-called
half-twist:

I

preserving one super h
integers (typically, ri =

ing Is vay | ~rve supersymmetry on
-twisting is the only way to preserve s persy

. |’-Ir
Incidentally, hall 2) GLSM.

the sphere, unlike for (2.
pl, Oct 26, 2015
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/,/’/—'-’-;—_;-_;—_-;—/
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] 3 a f

o = diag(ay) .
The matter fields obtain a mass

Y et ~ Y7~ il 0.[ra
M = d!c,f’”iu — r)f[:;- ]”___“ i

By gauge invariance, M;; IS block-diagonal, with each block sg

fields with the same gauge charges.
)

We denote these block

(Oﬂ the (2. 2_)' locus, fs'f” — f)]folrr_J.

| et us introduce the notation
(1 = rank{

- o~

1ot A Nty
— det M-, < VI y V) e

eneous polynomial Of de
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The Coulomb branch of theories with a (2.2) locus

If we have a generi ;
¢ &; potentials, there is a Coul
by the scalar o in £ - oulomb branch spanned

g = diag(ay) .

The matter fields obtain a mass
Mf/ - E).-"g"|uif] — ')IE;I]-,..U ’

By gauge invariance, : - is block-diagonal, with each block spanned by

fields with the same OcUGC charges. We denote these blocks by M.

(On the (2,2) locus, M;; = 6;Qi(0).)

| et us introduce the notation
(r = rank(G))

P.lg) = kjl_‘l.‘l."» = [

-
. rjs

o n., > 1iNa.

Pl, Oct 26, 2015 38/45

which is 2 homogeneous PO olynomial of degree
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€ Jelirey-Kirwan-Grothendieck residue

In the (2.2) case, the Jeffrey-Kirwan residue determined a way to pick
a middle-dimensional contour in

g 2=i) H; = {0,|Qi(c) =0} ,

o al=ila - alal r.rlr-:
For generic (0.2) deformations
S M,

- - ‘I‘: cnre r~
on more general aivisOis Ul
S
3 $ 4la e lleRala
hirh intersect at the origii ©f
II'I’!l'\CiI IS W
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The Jeffrey-Kirwan-Grothendieck residue

The Grothendieck residue itself is defined as:

Res/n w ] | , Py
CS3(0) WS = — @ dog N+ N do, ———— ,
(27i)" Jr [

with the real r-dimensional contour:
[.={ceC||Py]|=¢
and it is eminently computable.

L b \Y .
Finally, we should take n = &5y toca

from infinity on the Coulomb brancig
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CP' x CP!, continued.

—

We have two sets v = 1.2:

detM, = det(Ag, + Bas) . detM, =

The Coulomb branch residue formula gives

Pirsa: 15100118

’[i(ic[_'.f‘wl Tha

f {.‘Jrlf_.;.t
/ 1] I "\—‘- | ,"I 7 Y "(-‘ ; [
.KI—JI f—l--- pr— / (f [.,'. “4}{“ 72 = l
i i (¢ (detM )
- J
1 - -~ - '.‘-.:i|..~ ...,..JI‘(..,;
This can be checked against inaependerit mathematics
£ £ - : rel ine
of sheaf cohomology groups
— (4
Iso be de

X AR el RS e L i d i st

| computations
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Conclusions

» We studied /' = (2.2) supersymmetric GLSMs on the
()-deformed sphere, E

We derived a simple Coulomb branch formula for the S5
observables.
When eq = 0, this gives a simple, general formula for. A-twisted
GLSM correlation mlcuol.\..
Some correlators could not be computed with other methods, such
as the ones involving Tr(a") in @ non-Abelian theory.
o Even when other methods are possible (e.g. mirror symmetry), the
Coulomb branch formula is much simpler.
The formula is valid in any phase in Fl para
from boundaries), geometric or not.
Surprisingly, it genera

interesting new results 10
corresponding heterotic ge
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