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Abstract: <p>We consider quantum quench from a gapped to a gapless system in 1+1 dimensions. We </p>

<p>provide arigorous proof of the thermalization of the reduced density matrix, hence that of</p>

<p>an arbitrary string of local operatorsin an interval. In case the system is integrable, the "thermalization” leads to a generalized Gibbs ensemble
(GGE). We model the critical quench in terms of an initial state in terms of a conformal boundary state deformed by exponential cutoffs involving
hamiltonian and other charges. We justify this choice of the initial state by explicitly</p>

<p>deriving it in free boson and free fermion systems with time-dependent mass. A surprising result we find is that for generic quenches and
observables the higher charges remain </p>

<p>important even if theinitial gap is arbitrarily high, contrary to standard RG expectations.</p>

<p>( based on hep-th/1501.04580 and a couple of upcoming papers)</p>
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Introduction
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To thermalize or not to thermalize?
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Introduction
(o] Yololelelelelele]

Quantum quench

Consider a quantum system in its ground state. Turn on a
time-dependent coupling g(t) for some time up to t = t;.

L
e.g. H(t)=—J>  [of0fq + g(t)of]

=1

gt
9o

The post-quench dynamics is described by a final Hamiltonian
H and an ‘initial state’ |v»1), which depends on g(t).
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Introduction
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Late time dynamics: thermalization

Post-quench:

(1)) = expl—iH(t — t;)]]1)

Does the system reach a steady state at ‘late times’?

Does the final state ‘forget’ most features of the initial state? In
particular, is the state ‘thermal’?
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Introduction
[ele] Yololelelelele)

Late time dynamics: thermalization

Post-quench:
(1)) = exp[—iH(t — t;)]|vn)

Does the system reach a steady state at ‘late times’?

Does the final state ‘forget’ most features of the initial state? In
particular, is the state ‘thermal’?

Of course, we cannot have pure state — mixed state.

A more accurate statement of thermalization is ...
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Definition of thermalization

7 - toam
(1101 (X1 1)...0n(Xn, )]|11) —25 (Oy(Xy)...On(Xn)pegm)

Equivalent statement in terms of density matrix of subsystem A

t> feqm

/)A(t) — A, eqm

where p,(t) = Tr [ (1)) ()], Pacan = T ac Pegm

o CED

This formalizes the concept of the rest of the system as a ‘bath’.
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Quantum Ergodic Hypothesis

i
QEH: (i) An equilibrium state pegm exists, and it is given by the
microcanonical ensemble

Pegm — Fmicro

where the microcaonical ensemble is defined by the energy of
the pure state |v4).
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Quantum Ergodic Hypothesis

i
QEH: (i) An equilibrium state pegm exists, and it is given by the
microcanonical ensemble

’egm — Fmicro

where the microcaonical ensemble is defined by the energy of
the pure state |v4).

(i) Besides the energy, all other details of the quench are
forgotten at late times.
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Introduction
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Quantum Ergodic Hypothesis

W

QEH: (i) An equilibrium state pegm exists, and it is given by the
microcanonical ensemble

Pegm — [micro

where the microcaonical ensemble is defined by the energy of
the pure state |v4).

(11) Besides the energy, all other details of the quench are
forgotten at late times.

Is the QEH true?
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Thermalization in gravity: gravitational collapse

W

event norizon

Pirsa: 15100116

No hair theorem: different forms and
descriptions of matter, collapse into a
black hole characterized by only the to-
tal mass (and angular momentum and

charge) of the collapsing matter.
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Thermalization in gravity: gravitational collapse

event horizon

No hair theorem: different forms and

‘L e descriptions of matter, collapse into a
forms
black hole characterized by only the to-
tal mass (and angular momentum and
T charge) of the collapsing matter.
A e == |
opoce
7 . »
ppure = |101) (1| — py 4o INformation loss

As mentioned above, the correct way to understand this is in
terms of the reduced density matrix: p,(t) — P 0
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Thermalization in gravity: gravitational collapse

vent horizon

W

No hair theorem: different forms and

‘L phack descriptions of matter, collapse into a
black hole characterized by only the to-
tal mass (and angular momentum and

T charge) of the collapsing matter.
=2 |
? : :
ppure = |t1) (V1| — py , o INformation loss

As mentioned above, the correct way to understand this is in
terms of the reduced density matrix: p,(f) — Pam .0

Quantum ergodic hypothesis holds for gravitational collapse.
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(elelelelel lelelele

Thermalization in gravity: gravitational collapse

W

event horizon

No hair theorem: different forms and

‘L - descriptions of matter, collapse into a
forms
black hole characterized by only the to-
tal mass (and angular momentum and
T charge) of the collapsing matter.
R e
opoce
7 . »
ppure = |101) (V1| — py 4o INformation loss

As mentioned above, the correct way to understand this is in
terms of the reduced density matrix: p,(t) — Py, 0

Quantum ergodic hypothesis holds for gravitational collapse.

AdS/CFT: gravitational collapse= thermalization in field theory.
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Non-thermalization

O=TT
W _— - - 60
200 [0 i T 1 1
> B 2 i f1 3 5
g [ \ 1]
= ll\ i 3 A e l
~EREEARAER e
. TN I_ | thermal value
lk Y. __\.JX. 3
o \/ \/ na
R = NN L
RS S NS i
| 51 f - SANE 2 ]
%) 72T I = o I ’ 20 { = 30 -UZ e = 0.2 t 0.4 Ul
r N THOUSANDS OF CYCLES 1+1 dimensional critical system

Weakly anhamonically coupled with spatial boundaries; shows
chain of oscillators show ‘revival’ periodicity AT = L /2.

Fermi, Pasta, Ulam 1953 Mandal, Sinha, Ugajin 2015; see also Cardy 2014,

Kuns, Marolf 2014

AdS/CFT: For gravitational duals of non-ergodic systems, see Balasubramanian,
Buchel, Green, Lehner, Leibling 2014
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Integrable systems: recent insights

Expgct: integrability = non-ergodicity.

But, examples of 2D integrable models have been discovered in
the last 8 years, where QEH holds.

g / -f‘
Transverse field Ising (Calabrese et al 2005) 0.45 / l( ’ |

(:1bbs

L
H=—J 5% " [rrfrrf“l —|—h(!)rr;-?]

/

Hard core boson chain (Rigol et al 2007)

H::—Jj:??tfq,1+hx. Te
os0f e N = 120
Massive Scalar(Sotiriadis, Cardy 2010)
— N = oc
S = [ d?x [(04)% — m?(t)o?] ]
0 -0 40 60 80 100 120 140

Matrix QM model (Morita, GM 2013)
. (a) p1(f) and GGE vs. Gibbs ensemble
szjdrhuﬂmu+mmu+uh\

Morita, GM 2013
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Critical Quench

RG flow to a critical point leads to universality classes of
systems.

Suppose in course of a quench, g(t) stops at a value g, for
which the system is critical.

g(t)
9o

Does the ‘dynamics’ of various systems show some universality
in this case?
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Rest of the talk

e Modelling critical quench: first pass (Calabrese-Cardy 2004)
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Rest of the talk

e Modelling critical quench: first pass (Calabrese-Cardy 2004)

e Proof of thermalization in general CFT with CC initial
conditions
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Rest of the talk

® Msrc’jelling critical quench: first pass (Calabrese-Cardy 2004)

e Proof of thermalization in general CFT with CC initial
conditions

e Realistic quench: generalized CC state
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Rest of the talk

e Modelling critical quench: first pass (Calabrese-Cardy 2004)

e Proof of thermalization in general CFT with CC initial
conditions

e Realistic quench: generalized CC state

e Proof of thermalization in general CFT with generic initial
conditions

e Non-universality and ‘non-Wilsonian’ late time dynamics.
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Rest of the talk

e Modelling critical quench: first pass (Calabrese-Cardy 2004)

e Proof of thermalization in general CFT with CC initial
conditions

e Realistic quench: generalized CC state

e Proof of thermalization in general CFT with generic initial
conditions

e Non-universality and ‘non-Wilsonian’ late time dynamics.

e Holographic interpretation. QEH can be interpreted as
gravitational collapse to black holes with infinite number of extra
charges! CFT Relaxation rate= Quasinormal frequency of BH.
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Rest of the talk

e Modelling critical quench: first pass (Calabrese-Cardy 2004)

e Proof of thermalization in general CFT with CC initial
conditions

e Realistic quench: generalized CC state

e Proof of thermalization in general CFT with generic initial
conditions

e Non-universality and ‘non-Wilsonian’ late time dynamics.

e Holographic interpretation. QEH can be interpreted as
gravitational collapse to black holes with infinite number of extra
charges! CFT Relaxation rate= Quasinormal frequency of BH.
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Critical quench: CC
[ 1o}

Critical quench: first pass (Calabrese-Cardy ansatz)

For a sudden quench from a coupling go to a quantum critical

cougdling g1 (M52 = go — g1)

S = Scer(g1) + (9o — g1) | FxO(~H)Oa(x. 1)
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Critical quench: CC

®O0

Critical quench: first pass (Calabrese-Cardy ansatz)

For a sudden quench from a coupling go to a quantum critical
coupling gy (M52 = go — g1)

S = Scrr(gn) + mE=2 [ Px6(~1)Oa(x. 1)

Jo

g(t)
Calabrese and Cardy (2005)
modelled the state at t = 0O

£ as |vecc) = e *H|Bd)

Here » ~ 1/mo. |Bd) =conformal boundary state.
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Critical quench: CC

®O0

Critical quench: first pass (Calabrese-Cardy ansatz)

For a sudden quench from a coupling go to a quantum critical
coupling gy (M5~ = = go — g1)

S = Scrr(gr) + mE~2 [ Px6(~1)Oa(x. 1)

Jo

g(t)
Calabrese and Cardy (2005)
as modelled the state at t = O
£ as |vec) = e M| Bd)

Here » ~ 1/mo. |Bd) =conformal boundary state.
Logic: Single scale, not visible to E < myq; the state is
conformal (= |Bd)). Modes E > mgo are not excited by the

quench (= e *H ~ e—H/mo )
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Critical quench: CC
ce

Thermalization in a CFT with initial state |y cc) = e~ |Bd)

Time-dependence of one- and two-point functions (calabrese-cardy 200s,...)
W

?>>r .
(Yee|O(x, t)|vee) — Tr(ppO(x. 1)) +ae ', pz=eFH/Z
where 3 = 4n. v = 27 A /3. A= scaling dimension of O(x. t). Proof:
> — I'ei'TW/2H - I'eQWW/,"f
T=K A —r=_i_'t""
/ Plane (real time) \
t=0 o L S P \
\ z — i exp|-ntt/x]
W=X+IT \ /
"z'.-'-'-l explrt/x]

Strip geometry
e Only memory of initial state= mgy ~ 1/~ or the |nlt|al energy, e

Universality of late dynamics: ~;/~;, = Aj/A, irrespective of initial
state.
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Rigorous result: CC
[ Tolo)

Rigorous result on thermalization

Define reduced density matrices
pa(t) = Tr o |tvec(t))(Wec(t)|. pa(3) = Trep,
and their square normalized variety: p = p/ m
We prove that (awm-sinha-sorokhaibam 1501.04580, Cardy 1507.07266 )
Tr(p,(t) pA(3)) =1 — a e 2™  faster transients

vm = 27Am/ /3 <= the most relevant primary operator

3p/4
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Rigorous result: CC
(ol Yo

Details

The overlap function
]

la(t) = Tr(pa(t)pa(3)) =

iInvolves gluing a strip and a cylinder along an interval. We compute
this by USing the short interval expanSion (Headrick 2010, Calabrese-Cardy-Tonni 2010)
in which each interval is replaced by a direct sum of conformal fields.

(GM, Sinha,Sorokhaibam 2015)
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Rigorous result: CC
(oY Yo

Details

The overlap function

involves gluing a strip and a cylinder along an interval. We compute
this by using the short interval expansion (Headrick 2010, Calabrese-Cardy-Tonni 2010)
in which each interval is replaced by a direct sum of conformal fields.

(GM,Sinha,Sorokhaibam 2015)

Zsc = Co,0(1 + S7°), 87 = > _ Ca0((Oa)ly, + (Oa)py,) + > _ Cap(Oa)k, (Ob)lhy,
a ab
Zss = Co,0(1 + Si° + 85°), S7° =23 Ca0(Oadly + D Cab(Oa)ky (Ob)ly,, S5° =3 Gk k({Ok) 5y )?
a ab k

ch = Co,o(1 + STCC)- S1CC = 22 Ca.O(O"a‘);,; + Z Ca.b(oa>gy/(ob>gy/
a ab
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Rigorous result: CC
(oY Yo

Details

The overlap function

IA(t) = Te(p4 ()4 () = =% -~
iInvolves gluing a strip and a cylinder along an interval. We compute
this by using the short interval expansion (Headrick 2010, Calabrese-Cardy-Tonni 2010)
in which each interval is replaced by a direct sum of conformal fields.

(GM,Sinha,Sorokhaibam 2015)

Zsc = Co,0(1 + Si°), S7° = Z Ca,0((Oa) by + (Oadly,) + Z Ca,b(Oa) by (Ob) ks,
Zss = Co o(1+ S7° + 83°). Si° = 2Z Ca,0(Oa)ky, + Z Ca.b(Oa)k, (Op)L,,. S3° = Z Cr k ((OK) )2
Zoc = Coo(1 + S7°), S7° = 2> Ca.o(oa>cy; + > Ca.b(oa>“,(ob>cy/

a ab

At t — oo all one-point functions reduce to thermal one-point function. Thus,
Zse = Zss = ZSs Hence /o(t = oo) = 1. The slowest transient comes from S3° which
contains (Om)* )2 ~~ exp[—2ymt].

str
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Rigorous result: CC
ococe

Consequence of the rigorous result

We f'HP d the following long time behaviour of the reduced density
matrix itself

t=>-1/2 N
/)A(f) ——?->—-/—+ /)A(.f) + g e Yt

where / = length of the interval A.

Thus, for any finite string of local operators, or even an infinite string
of local operators all contained in the interval A, we conclude

t>1/2.t

(Voo | O1(X1, t1) O2(Xz, t2)...Op(Xn, tn) |Vos) ———

Tr (/)!.501 (X1 . B )O2(X2. tg)...On(xn. fn)) + a e ymt

The only ingredient which goes into the proof is that the spectrum of
conformal dimensions has a gap (note that this is different from a
mass gap). (Finite size of space: near-thermalization followed by
recurrence).
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Actual quench: gCC
[ TeoTo)

Actual quench, e.g. scalar field: generalized CC

o 2, | . 112 2,2
—— — )('J — (40
S ./-dxg[(f_) m(t)<q ]
| m(t) ) ‘ ‘
Time-dependent coupling induces a
m, | Bogoliubov transformation:

— ajn(k) o aout(k) — v(k)al (k) Hence
10, in) —e>k Y(Kag,(Mag(—kK) |0 out)

e

t
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Actual quench: gCC
[ TeoTo)

Actual quench, e.g. scalar field: generalized CC

| 4% Time-dependent coupling induces a
m, | Bogoliubov transformation:
— ajn(k) o aout(k) — v(k)al (k) Hence

N 0. in) —e>k Y(Kag,(Mag(—kK) |0 out)

t=0 t
For a simple form m?(t) = mg(1 - tanh(t/o6t)) /2, explicit value of ~(k): Birrell, Davies 1994
|0, in) = |4 -gcc} = e~ (r2H+3, ""”W”+"-)|Diric:h|et), where rs. gy depend on myg, ot. For
5t — O, we have rp = 1/mg. kg = —5/(160m3). ...
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Actual quench: gCC
[ TeoTo)

Actual quench, e.g. scalar field: generalized CC

& S = /dzx % [(,-;,,-,)2 — m(t)"‘f:?]
' m(t)
Time-dependent coupling induces a
m, | Bogoliubov transformation:
\ ajn(k) o< aout(k) — ‘:(k)agut(k) Hence
o N 10, iny =e2-k “(k)a;ur(k)agur(_k)lo. out)
t=0 t
For a simple form m?2(t) /775(1 - tanh(t/ot)) /2, explicit value of ~(k): Birrell, Davies 1994
10,in) = |Yycc) = e~ (r2H+3, ””W”*'“)|Dirichlet), where ko, g depend on mg, 6t. For
5t — 0, we have rp = 1/mg, kg = —5/(160m3). ...

Here W, ~ S°, k"~ 'al (k)aout(k). n=2.4.6. ...

“out
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Actual quench: gCC
[ TeoTo)

Actual quench, e.g. scalar field: generalized CC

S = / d?x % [(ih_u)z - m(t)zf,-»z]

| = Time-dependent coupling induces a
m, Bogoliubov transformation:
— ajn(k) o< aout(k) — v(k)al (k) Hence

N 0. in) —e>k Y(Kag,(Mag(—kK) |0 out)

t=0 t
For a simple form m?(t) = mg(1 — tanh(t/o6t)) /2, explicit value of ~(k): Birrell, Davies 1994
|0, in) = |4 ‘gcc} = e~ (r2H+3p knWn+...) 'Dirichlet), where xo. r4 depend on mqg, ot. For
5t — O, we have rp = 1/mg. kg = —5/(160m3). ...

e With additional charges, whether finite or infinite in number, the initial state is not of
the naive CC form. e It retains more memory in case of multi-scale quench.e These
remarks also hold for non-critical quench (e.g. if the final mass # 0), or with the intial
state |0, /in) replaced by excited states, e.g. a squeezed state.e We find similar
behaviour in a theory of fermions.
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Actual quench: gCC
(o] To)

Rigorous result on thermalization with |y )

Consider a generalized CC state, in a CFT, of the form

W |'-'gcc> _ e—(h‘2H+zn h-,,on+...)|8d>

where the number of additional charges Q, can be finite
or infinite in number (we take them to be derivable from T
local currents).
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Actual quench: gCC
(o] To)

Rigorous result on thermalization with |y )

Consider a generalized CC state, in a CFT, of the form

(Ygoc) = e~ (n2H+2nrnGnt-)|Bd)

where the number of additional charges Q, can be finite
or infinite in number (we take them to be derivable from e -

local currents).
We prove that (GM-Sinha-Sorokhaibam 1501.04580, Cardy 1507.07266)

ts-1/2
pa(t) —= pa(B.{un}) +ae !

where the equilibrium state is given by
pa(B.{un}) = e—BPH—-2, “”O”/‘Z.With 3 = 4Kro,ptn = 4K

and the relaxation time involves conformal properties (dimension A, charges gp) of the
most relevant operator

27T - - -
Y = I:A + E InQn + 0(112)] y Hn = —
n

3 Fn—1
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Actual quench: gCC
(o] To)

Rigorous result on thermalization with |y___)

Consider a generalized CC state, in a CFT, of the form

|(' _gCC> = e—(h‘gH-{»Z,, h-,,on+...)|8d>

where the number of additional charges Q) can be finite
or infinite in number (we take them to be derivable from e T~

local currents).
We prove that (GM-Sinha-Sorokhaibam 1501.04580, Cardy 1507.07266)

t=s-1/2 ,
PA(t) —— pa(B3.{un}) +ae vt

where the equilibrium state is given by
pa(B.{n}) = e_“'iH_ZnﬂnO”/Z.With 3 = 4Ko,ptn = 4kKnp

and the relaxation time involves conformal properties (dimension A, charges qgn) of the
most relevant operator

27 - ~2 ~ = _Hn mg_1
v = -5 A + E finQn + O(a<) | . jin = 3n—1 o mn—1
n 0]

For a sudden quench, 15 ~ mo_"+1 ~ 37=1 hence mgp cancels from jin's!!
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Actual quench: gCC
ocoe

Non-Wilsonian behaviour?

In thedizcalar field example, the additional charges have higher dimensions than that of
the hamiltonian, and are expected to be irrelevant in the IR. We found above, however,
that the contribution of the additional charges to the relaxation time is of the same
order as the initial value 27 A /3, at least to linear order in jupn's.

In case of sudden quench of the ground state, the order O(/i?) terms are not
negligible. We have, however, explicitly computed the relaxation times and equilibrium
correlation lengths in non-interacting scalar and fermion models.

We find that (through ab initio calculation in scalar model)

limity — ~ [(t.'gCC|O(X1 L) O(x2, 1) -gcc)} ~ exp[—|x1 — x2|/&]

where the correlation lengths for various operators are given by
Operator O(x. t) £ (quench) £ (expected in a thermal state with 3 = 4/myg)
A 1/mg 3/(27) = 2/(7wmgp) (does not match)
e’ 8/(g%mo) 2/3/9° = 8/(g°mp) (matches)
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Actual quench: gCC
coe

Non-Wilsonian behaviour?

In thegmcalar field example, the additional charges have higher dimensions than that of
the hamiltonian, and are expected to be irrelevant in the IR. We found above, however,
that the contribution of the additional charges to the relaxation time is of the same
order as the initial value 27 A /3, at least to linear order in jp's.

In case of sudden quench of the ground state, the order O(/i?) terms are not
negligible. We have, however, explicitly computed the relaxation times and equilibrium
correlation lengths in non-interacting scalar and fermion models.

We find that (through ab initio calculation in scalar model)

limits—s oo [(r.~gcc|0(x1.t)O(x2. r)|a.-gcc>} ~ exp[—|x1 — x2|/£]

where the correlation lengths for various operators are given by

Operator O(x. t) £ (quench) £ (expected in a thermal state with 5 = 4/mg)
A 1/mo B/(27) = 2/(7wmg) (does not match)
&% 8/(g°mo) 2/3/9° = 8/(g°mp) (matches)

Higher dimensional (‘irrelevant’) operators affect large distance behaviour!
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Holography
®0000

AdS/CFT Dictionary (holography)

W

S-Dimensional anti—de Ster spacetime Ihologram.

Superstrings

Conformal fields Hot radkation
ALFRED T. KAMAJIAN
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Holography
®0000

AdS/CFT Dictionary (holography)

W

Conformal fields
ALFRED 7. KAMAJIAN

Thermalization in the boundary field theory= gravitational
collapse into a black hole in the bulk!
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Thermalization and holography

Holography
O®000

CFwW

Vacuum

Thermal state (/3)

Thermal state with s
Quantum Quench

Ergodicity

Thermal decay
Thermalization/relaxation rate

Integrable CFT (2D)

GGE (generalized Gibbs ensemble)
Quantum quench in integrable CFT
Thermal decay rate to GGE

Gravity

Anti de Sitter space
AdS-Schwarzschild (M(/3))
Charged BH

Gravitational collapse

No hair theorem

Quasinormal mode
Quasinormal frequency (QNF)

NN YW
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Holography
O®000

Thermalization and holography

CFwW

Vacuum

Thermal state (/3)

Thermal state with s
Quantum Quench

Ergodicity

Thermal decay
Thermalization/relaxation rate

Integrable CFT (2D)

GGE (generalized Gibbs ensemble)
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AdS-Schwarzschild (M(/3))
Charged BH

Gravitational collapse

No hair theorem

Quasinormal mode
Quasinormal frequency (QNF)

Higher spin gravity
?
?
?
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Thermalization and holography

CFi¥ Gravity

Vacuum Anti de Sitter space

Thermal state (/3) AdS-Schwarzschild (M(/3))
Thermal state with s Charged BH

Quantum Quench Gravitational collapse
Ergodicity No hair theorem

Thermal decay Quasinormal mode
Thermalization/relaxation rate Quasinormal frequency (QNF)
Integrable CFT (2D) Higher spin gravity

GGE (generalized Gibbs ensemble) Higher spin BH

Quantum quench in integrable CFT Gravitational collapse to HS BH
Thermal decay rate to GGE ?
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Holography
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Thermalization and holography

CFi¥ Gravity

Vacuum Anti de Sitter space

Thermal state (/3) AdS-Schwarzschild (M(/3))
Thermal state with s Charged BH

Quantum Quench Gravitational collapse
Ergodicity No hair theorem

Thermal decay Quasinormal mode
Thermalization/relaxation rate Quasinormal frequency (QNF)
Integrable CFT (2D) Higher spin gravity

GGE (generalized Gibbs ensemble) Higher spin BH

Quantum gquench in integrable CFT Gravitational collapse to HS BH
Thermal decay rate to GGE QNF of HS BH
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Holography
(eTe] Yolo)

Thermalization rate to GGE= QNF of HS BH

)
The holographic dual to 2D CFT = AdS gravity in 3D

Higher spin gravity theories are a mini version of string theory
with a single Regge trajectory. In 3D, this is characterized by an
infinite dimensional symmetry and infinite number of conserved
charges.
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Holography
(eTeT Yolo)

Thermalization rate to GGE= QNF of HS BH

)
The holographic dual to 2D CFT = AdS gravity in 3D

Higher spin gravity theories are a mini version of string theory
with a single Regge trajectory. In 3D, this is characterized by an
infinite dimensional symmetry and infinite number of conserved
charges.

These theories possess BH solutions. The BH’s carry an infinite
number of conserved charges ! (infinite number of ‘hairs’)
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Holography
(eTe] Yolo)

Thermalization rate to GGE= QNF of HS BH

The ‘holographic dual to integrable 2D CFT = Higher spin AdS
gravity in 3D

Higher spin gravity theories are a mini version of string theory
with a single Regge trajectory. In 3D, this is characterized by an
infinite dimensional symmetry and infinite number of conserved
charges.

These theories possess BH solutions. The BH’s carry an infinite
number of conserved charges ! (infinite number of ‘hairs’)

QNF haS been CaICL“ated fOI’ bU|k SC'a|ar' Cabo-Bizet, Gava, Giraldo-Rivera, Narain
2014 for a HS BH with a single chemical potential ;3
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Holography
(eToTeT Yol

Match made!

Imaginary part of QNF

W
27 /1
Imw = == (1 +,\*%3(1 *,\)(2+,\))

Thermalization rate of the dual CFT operator is

27 -
YCFT = —3 [A + ; /InOn] ?

Do these match?
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Holography
(eToTeT To)

Match made!

Imaginary part of QNF

W
27 /1
Imw = = (1 +,\*%3(1 *,\)(2+,\))

Thermalization rate of the dual CFT operator is

27 N
YCFT = —3 [A + ; /InOn] ?

Do these match?
A — 1 —- /\, and OS — %(1 -1 /\)(2 -+ /\), Gaberdiel-Gopakumar 2010,

Gaberdiel-Hartman 2011, Ammon-Kraus-Gutperle 2011
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Holography
(eToTeT To)

Match made!

Imaginary part of QNF

27 /2
Il'l'l (TP — _), 1 —+ /\ - %(1 . /\)(2 —+ /\))

Thermalization rate of the dual CFT operator is

27 N
YOFT = — [A + ; //nQn] ?

Do these match?

A =1+ A and Q3 = %(1 + A)(2 + ), Gaberdiel-Gopakumar 2010,
Gaberdiel-Hartman 2011, Ammon-Kraus-Gutperle 2011

QNF = relaxation rate

Integrable CFT’s thermalize. The thermalization is described by
a new class of models (HS BH).
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Holography
[eToTeT To)

Match made!

Imaginary part of QNF

27 /1
Im w = —), 1 —+ A -+ %(1 -1 /\)(2 —+ /\))

Thermalization rate of the dual CFT operator is

27 ~
YCFT = —3 [A + ; /InOn] ?

Do these match?
A — 1 — /\, and OS —_— %(1 ~1- /\)(2 -+ /\), Gaberdiel-Gopakumar 2010,

Gaberdiel-Hartman 2011, Ammon-Kraus-Gutperle 2011

QNF = relaxation rate
Integrable CFT's thermalize. The thermalization is described by
a new class of models (HS BH).
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Holography
loleloleT

e Mddelling critical quench: first pass (Calabrese-Cardy 2004)

e Proof of thermalization in general CFT with CC initial
conditions

e Realistic quench: generalized CC state

e Proof of thermalization in general CFT with generic initial
conditions

e Non-universality and ‘non-Wilsonian’ late time dynamics.

e Holographic interpretation. QEH can be interpreted as
gravitational collapse to black holes with infinite number of extra
charges! CFT Relaxation rate= Quasinormal frequency of BH.
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