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Abstract: <p>Topological quantum computation is based on the possibility of the realization of some TQFTs in Nature as topological phases of
guantum matter. Theoretically, we would like to classify topological phases of matter, and experimentally, find non-abelian objects in Nature. We
will discussion some progress for a general audience.<br>

<br>

</p>
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DREAM: “Periodic Table” of Quantum Phases of Matter

Classification of symmetry enriched topological order in all dimensions
Too hard!!!

Symmetry |[d=0{d=1]d=2[d=3| ! L B —
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1): short-range entangled (or SPT) including topological insulators and topological superconductors:
X.-G. Wen (Group Cohomology), ..., and A. Kitaev (K-theory)---generalized cohomologies.

Classification of Unitary Modular Categories
, Brutas

rank = 2,3, 4 with Rowed ard Saong, rank = § with Brulland, Ng, Rowel

2): Low dimensional: spatial dimensions D=1, 2, 3, n=d=D+1
2a: classify 2D topological orders without symmetry
2b: enrich them with symmetry
2c: 3D much harder
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Topology Protects

Against Noise |
Topological precision: 5\_ /
Topological theory (IQHE) is
confirmed by experiment to 10

decimal places: ) ]
a~1 =137.035999074(44)
* Feynman and other pioneers taught us that the v .
universal is the ultimate quantum computer ( )
* Quantum information is notoriously fragile b f

* Quantum information can be locked into topology
such as knots to be protected

* Station Q pursue topological protection of qubits
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Reshetikhin-Turaev (2+1)-TQFT/Witten-Chern-Simons Theory

Modular Tensor Category

2D Topological Phase of Matter w==gp Topological Quantum Computation

2D topological phases of matter are (2+1)-TQFTs in Nature and
hardware for hypothetical topological quantum computers.
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Topological Phases of Quantum Matter

N —

Local Hilbert Space  H = ®Hi — oo+

1=1 v —v v

Local, Gapped Hamiltonian H :H — H ¢ *—*—+°
E Two gapped Hamiltonians Hq, H, realize the

same topological phase of matter if there
exists a continuous path connecting them
gap  without closing the gap/a phase transition.

E

A topological phase, to first approximation, is a class of gapped
Hamiltonians that realize the same phase. Topological order in
a 2D topological phase is encoded by a TQFT or anyon model.
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Atiyah-Segal Type (2+1)-TQFT: Codim=1

A symmetric monoidal functor (V, Z):
category of 2-3-mfds = Vec
2-mfd Y > vector space V(Y)
3-bord X fromY; to Y, 2 Z(X): V(Y;) = V(Y>)

X X
.V(Q)):(C /\1 : z’
s V(Y UY,) = V(1) @ V(Yy) () ) | )
e V(=Y) = V*(Y) \J_\J \
S Z(Y X I) = Idv(y) Y; Y, Y3

« Z(X, UX,) =2Z(X,) - Z(X;) (anomaly-free)
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Realization of TQFTs as Topological Phases

A gapped quantum Hamiltonian schema represents a topological phase of matter if

the functor Y — V(Y) (ground states) is a TQFT.

Hamiltonian schema:

A recipe to cook up a quantum system from any celluation of Y.

Pachner theorem organizes all celluations A into an inverse system,
so the ground states VV(V; A) have a limit V(Y).

Pirsa: 15100104 Page 9/45



Haldane Hamiltonian for Semion Theory or u = % Bosonic FQH

=t S btb, — ¢S bib,eiter
Hy.. = tz brby —t Z br.by-e Cincio, Vidal, PRL (2013)
(rr’) {(rr'})
! Z bib., + H.c.,
(({rr")))

set ¢ = 0.47 and (¢t.t',t") = (1,0.6,—0.58)

o 111 1073 [ -14 0.2
=%l1 +W —14 4+4i |’
—j2x 10 {43 1 0
U =e—i% [0 z] X (C F0.01 [0 c—i().()(]?‘)'
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Local Gapped Hamiltonian

L=Q®;C"H=Y;P,

where Pj'S are local commuting Hermitian projectors (LCPs)

1. P}=P, P2 = P, [P, P] = 0

2. k-local: P; is of the form 0, & Id for some operator Oy on k qudits

= Gapped!
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Toric Code---Kitaev

Local Commuting H=-2, A, -2, B,

v 2
P
L=®¢dges C* x_ (0 1
edges ¥ = (1 0)
A=Becy ©° Bpthers 1. 3 1 0
*=(p -1)
0 -1

Bp=®€8p c* ®othe‘rs Id,,
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Ground States Form TQFT

For each surface Y and a triangulation Ay, the ground state manifold V(Y, Ay) of
the toric code Hamiltonian is canonically equivalent to the Z,-homology TQFT
vector space V(Y).

The toric code represents a topological phase of matter whose low energy physics
is modeled by the Z,-homology TQFT.

The Z,-homology TQFT has a Hamiltonian realization by the toric code Hamiltonian.
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Realization of Unitary TQFTs by Local Commuting Projectors

Which unitary TQFT has a LCP Hamiltonian realization?

Conjecture: only doubles or Drinfeld centers

» Turaev-Viro unitary TQFTs---2D Atiyah-Segal type
String-net/loop condensation---Levin-Wen/Kitaev models
Mathematically well-understood, Physically not clear.

» Reshetikhin-Turaev/Witten-Chern-Simons unitary TQFTs---not Atiyah-Segal type in 2D, yes in 3D

Trial wave functions---chiral TQFTs
Physically in better shape (FQH states), mathematically not quite.
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Elementary Excitations=Anyons

Quasi-holes/particles in v=1/3 FQH are abelian anyons

oy ' \ *p ""k\ e/3 e/3 \/
k/\ J \ 1 i semion

W1/3=[dno-z)® Tiglz-z)® eilxl*/s -1 fermionf\ +1. boson

=IL{n1-z) ILn2-z) I[Lnz-z) I1(z-z)® e-ilzil%/a \

Any egm
Any-on

n anyons at well-separated n;, i=1,2,.., n,
there is a unique ground state \II T i/3
— &=\
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Anyon Model

Finite-energy elementary excitations=anyons

‘ Anyons a, b, ¢

Anyons are of the same type if they differ only
by local operators

Anyons in 2D topological phase described mathematically by a
Unitary Modular Category = Anyon Model = 2D Topological Order
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Anyons in Toric Code

* 4 types of anyons {1, e, m, Y}
1=ground state or vaccum, e, m=bosons, Y)=fermion,
e@e=1mPIm=1,e@m=y

The fusion rule same as Z, @Z,.

89

* The anyons form the modular tensor category D(Z,): 7 o
[ '

e m e m

€ m € m
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Anyon Model = Unitary Modular Category

Anyon types {a’ b’ €, } The number of anyon types called the rank

* Fusion Rules a x b= Z Ny c o = 0integer

* Fusion/Splitting spaces:

c a b
A X (a,b;c, u| € Vi Y X |a,b;¢, p) € V2
a b ¢
b c a

a b c

@ aoc .
F-Symbols N =X Fcamewn YT -

S

d d

3
Braiding (R-Symbols) . ! ; =3 [r¥) “Yb
¢ Juv v

C
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Rank-Finiteness for Modular Categories

Theorem (Bruillard-Ng-Rowell-W., JAMS (to appear)):

For a fixed rank, there are only finitely many equivalence classes of
modular categories.

Classification of Unitary Modular Categories
rank = 2,3, 4 with Rowell and Stong, rank = 5 with Brulllard, Ng, Rowell

Remarks:

1. Refinement of Ocneanu rigidity: fix the fusion rule, finite.
2. Rank-finiteness for fusion/spherical fusion categories open.
3. An explicit bound and effective algorithm.

4. Feasible to classify by rank.

The ith-row lists all rank = { unitary modular tensor categories

Middle symbol: the fusion rule

Upper left comer: A = abelian theory, NA = non-abelian
Upper night comer number = the number of distinet theories
Lower left comer BU = there 1s a universal braiding anyon
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TQFTs and Higher Categories

Basic Principle:
Physics is local, so realistic TQFTs are determined by local data.

(D+1)-Topological Quantum Field Theories«= = —» (D+1)-Categories

(2+1)-TQFTs <«—— Modular Tensor Categories
Quantum Finite Group Algebras
Remarks:
1. Not fully extended. Not covered by Lurie’s cobordism hypothesis.
2. Frontiers are in d=3+1 both mathematically and physically:
(2+1)-TQFTs are unemployed---no major topological problems to solve in d=2+1,
(3+1)-TQFTs that can detect smooth structures are highly desired.
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Quantum Computation

* There is a serious prospect for quantum physics to change
the face of information science, and vice versa.

 Theoretically, the story is quite compelling:

* Shor’s factoring algorithm (1994)
e Fault tolerance ~1996-1997 (Shor, Steane, Kitaev)

 But for the last twenty years the most interesting progress
has been to build a quantum computer.

* Why? Can? How? When?...
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Quantum Speedup:

Factoring is in BQP (Shor's algorithm), but not known in
P (although Primality is in P).

25195908475657893494027183240048398571429282126

Given ann bit integer N~ 2“ 20403202777713783604366202070759555626401852588

07844069182906412495150821892985591491761845028
08489120072844992687392807287776735971418347270

. 13 RSA-2048 Classical: 1 billion years
CI355|ca"y P~ ec n pOIY (Iog n) Challenge ‘ )
. N Problem Quantum: 100 seconds
Quantum mechanically ~ n? poly (log n) 196762561338441436038330044149526344321901 14657
F N 21000 I - “ b.“. 54445417842402092461651572335077870774981712577
~ 24679629263863563732899121548314381678998850404
or i ’ c aSSIca y i l Ion years 45364023527381951378636564391212010397122822120
- 120357
Quantum computer ~ minutes

Pspace
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Why Quantum More Powerful?

* Superposition * Entanglement

A (classical) bit is given by a Quantum states need not be
physical system that can exist in products. For example:

one of two distinct states: .

0 or 1 (WaB) = 5 (|0408) +[141B))
A qubit is given by a physical % WA) R |¢B>

system that can exist in a linear
combination of two distinct

. 1
quantum states: [0) or |1) This is the property that enables

. quantum state teleportation and
|7,D> = ‘0> . /8 |1> Einstein’s “spooky action at a
a,feC distance.”
lof* + 8> =1 ly>€ CP?
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MIT Quantum Projects
TeCh nOIogy COMPANY TECHNOLOGY WHY ITCOULD FAIL

Review

Microsoft's
Quantum Mechanics

Lananagng Corporanons acveniures iniundamenia

0penanew era ol unmagnalXy po

By Tom Simonie on October 10, 2014

UAN | A MAGAZINE

st

Forging a Qubit to Rule Them Al o itdonsudbradiemtinioobiominiasty  Alibaba

Construction is now under way on a new information-storing device that

could become the building block of a robust, scalable quantum computer
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Key “Post-Shor” Idea

Peter Shor
Shor’s Factoring Algorithm

Michael Freedman Alexei Kitaev
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Why Topology?

* Topology is usually conceived of as that part of
geometry which survives deformation.

QOGSO  THAKIT
S2TO0Q  [HEFO%]
D Uorla w48 g 1 ya Aadn

GIOWE  FTWTOTHAR

|
 But, equally, topology is that part of quantum physics
which 1s robust to deformation (error).

irsa: 15100104 Page 26/45



P/NP, and the quantum field computer Faultdolerant quanum computaion by anyons

MIcHAEL H. FREEDMAN AYu Kizeyd -

Abstract
Abstract
A two-dimensional quantum system with anyonic excitations can be considered as a
quantum computer, Unitary transformations can be performed by moving the excitations
around each other. Measurements can be |u‘r'|u||nmi by joining excitations in pairs and
observing the result of fusion. Such computation is fault-tolerant by its physical nature,

Classical Physics Classical Computing Quantum field computing is the same
as quantum computing.

Quantum Mechanics Quantum Computing
True for TQFTs
Quantum Field Theory ? (Freedman, Kitaev, Larsen, W.)

String Theory ?2?? CFT? Topological string theory?
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A Revolutionary Idea

If a physical system were to have quantum fopological
(necessarily nonlocal) degrees of freedom, which were
insensitive to local probes, then information contained
in them would be automatically protected against
errors caused by local interactions with the
environment.

This would be fault tolerance guaranteed by physics at
the hardware level, with no further need for quantum
error correction, i.e. topological protection.

Alexei Kitaev
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2D Topological Phases in Nature

* Quantum Hall States
1980 Integral Quantum Hall Effect ---von Klitzing
(1985 Nobel)

1982 Fractional QHE---Stormer, Tsui, Gossard at v =
(1998 Nobel for Stormer, Tsui and Laughlin)

1987 Non-abelian FQHE???---R. Willet etalatv = g

* Topological superconductors and insulators

* Topological Nanowires---Kouwenhoven and Marcus

Pirsa: 15100104 Page 29/45



Quantum Dimension

Given n anyons of type x on the sphere S?, then the ground state
degeneracy V (5%, x, ...,x) ~ d? for some d, > 1.

2 V%

"y 7 X

If d,, = 1, then x is abelian. o 2. joaay v

If d,, > 1, then x is non-abelian,

which leads to degeneracy and non-abelian statistics.
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Degeneracy Implies Non-abelian Statistics

X self-dual with fusion rule : ‘ ¢
} X ) X
XRX=1DY S 7 o
/ } X k
The braid b is non-trivial.
&~ b
X
1 X
{
1 X I: X
1 lx

Rowell, W. (2015)
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Topological Quantum Computation
Freedman 97, Kitaev 97, FKW 00, FLW 00

Computation Physics
readout / \ measure
S ] ‘t - >
apply gates / braid anyons
-
.)C -
- . . . &*\__
initialize / \ create anyons
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Mathematical Theorems

Theorem 1 (Freedman-Kitaev-W.): Any unitary (2+1)-TQFT can be efficiently simulated by the quantum circuit
model.

There are efficient additive approximation algorithms of quantum invariants by the quantum circuit model.

Theorem 2 (Freedman-Larsen-W.): Anyonic quantum computers based on RT/WCS SU(2)-TQFTs at level k are
braiding universal except k = 1, 2, 4.

The approximation of Jones poly of links at the (k + 2)t" root of unity (k # 1, 2, 4) is a BQP-complete
problem.

Theorem 3 (Cui-W., Levaillant-Bauer-Freedman-W.-Bonderson): Anyonic model based on SU(2) at level k = 4
is universal for quantum computation if braidings are supplemented with measurements in the middle of
computation.
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Majoranas in Nature

Of all non-abelian objects believed to exist in topological quantum physics, we
are the closest to detecting and harnessing Majoranas.

perspective

M aj orana returns F. Wilczek, Nature Physics’09

Physics Today / Volume 64 / Issue 3 / SEARCH AND DISCOVERY
WwWw.DhyYSICST1@ 0O ]
p ys CS Physics Today - March 2011
'.o ay The expanding search for Majorana particles

March 2011 Barbara Goss Levi

Science, April (2011)

NEWS

Search for Majorana Fermions
Nearing Success at Last?

h‘ AAAS Researchers think they are on the verge of discovering weird new particles that borrow
a trick from superconductors and could give a big boost to quantum computers
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1D Kitaev Chain — Majorana Zero Mode

N-1
= —ch cj— Y (telejp + Acjejyr + huc.) Kitaev (2001)
=1
cj = %
trivial: £ =0and A=0and u <0 topological: u=0and ¢t =A
L, N-1
=i Z:.,- YB,jYA,j H =1t ijl 1B,jVA,j+1

EOEOETOED ... T D@ O

mA 1,B IN,A'IN,B
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Majorana Wires

—» Lutchyn, Sau & Das Sarma (2010)
Oreg, Refael & von Oppen (2010)

superconductor o2
H= [ dz[yp'(- ﬁ — p+iaoy0y + Vzoz )Y + (|Ay1y) + h.c.))

elk) e(k) €(k)

" \\B%/* > \ o
NN
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Majorana Qubits---Ising Theory

* Three anyon types: {1, 0, )}

* Fusion rules:

cRQo=1+Y,c0QY=0,YP QY = 1.

1=vacuum,

) = Majorana fermion,
o = Ising anyon or Majorana zero mode
* Majorana systems:

5 .
V= = FQH, nanowires, ...
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Majorana Quantum Computer

For n qubits, consider 4n MZMs
P: B4n_> U(N4n)

Given a quantum circuit on n qubits

Ui (C)®—— (C?)®r

Topological compiling: find a braid beB,, so that the
following commutes for any U,:

U, p(b)

()% —> Vi

(Cz[@’“ —> V4, V 4n-8s of 4n MZMs
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Majorana Quantum Computer

For n qubits, consider 4n MZMs
p: B4n_) U(N4n)

Given a quantum circuit on n qubits

Ui (C)®—— (C?)®r

Topological compiling: find a braid beB,, so that the
following commutes for any U,:

(C3)® — V4, V 4n-8s of 4n MZMs
U, p(b)

()% —> Vi
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Ising Braiding Gates

\/\ | SR enis8 < L ) Knill-Gottesman Thm
o i
\ o-xiB (1-i)/2 (1+i)/2
\ (1+i)/2 (1-i)/2

G4 O2# O3 G4
01
\ e-:"l.’ i'4 (
Q o
N\
NOT Gate = -gate cannot be realized
4 c’s 8

CNOT can be realized
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Symmetry and 2D Topological Phases of Matter

A general framework to classify 2D topological phases of matter with symmetry by
introducing G-crossed braided fusion category.

Given a 2D topological phase € and a global symmetry G of C, three intertwined
themes on the interplay of symmetry group G and intrinsic topological order of C

* Symmetry Fractionalization---topological quasi-particles carry fractional
guantum numbers of the underlying constituents

» Defects---extrinsic point-like defects. Many are non-abelian objects harboring
zero modes

* Gauging---deconfine defects by promoting the global symmetry G to a local G
gauge theory
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Symmetry and 2D Topological Phases of Matter

A general framework to classify 2D topological phases of matter with symmetry by
introducing G-crossed braided fusion category.

Given a 2D topological phase € and a global symmetry G of C, three intertwined
themes on the interplay of symmetry group G and intrinsic topological order of C

* Symmetry Fractionalization---topological quasi-particles carry fractional
guantum numbers of the underlying constituents

* Defects---extrinsic point-like defects. Many are non-abelian objects harboring
zero modes

* Gauging---deconfine defects by promoting the global symmetry G to a local G
gauge theory
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Possible Experimental Tests

Charge fractionalization in v=1/3 FQH liquid: o '-.l._;?"'w"’ o
e/3-Laughlin quasi-particles - #\

Current Noise, §, (10 = 4°/15)

Symmetry defects in bilayer FQH system
(two layers of v=1/3-FQH liquids)

Normal/SC domain walls in FQH / FQSH states
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Rich World of Many-body Entanglement Physics, Topological Materials, and Quantum Mathematics

-

(s
Lattice gauge theory 'High Tc¢

S \
.| Herbertsmithite Edge state
) e |superconductor .
L
r & \ T \ Y (& ) f

Wave function | |Local unitray Spin Vertex Aleebra

s ¥
_renormalization | E\lr;msl“ur‘nl;nlipnj L liquid ] A FQH | (CFT)
y | 5 e R - =
String-net Tensor Topological Pattern | Non—Abelian
‘condensation | | Network | | Order = of zeros Statistics
(— Long range (Topological
& A ) entanglement Tensor quantum field
photons & electrons \ Category s
\ ’ i { theory
p x [~ N\ ([ \ (. )
ADS/CFT | | Emergent Modular Classification Topological
gravity Transformation | | o 3_manifolds | Quantum comp. |

X.-G. Wen
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