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Abstract: <p>The Hartle-Hawking (HH) no-boundary proposal provides a Euclidean path integral prescription for a measure on the space of all
possible initial conditions. Apart from saddle point and minisuper-space calculations, it is hard to obtain results using the unregulated path
integral. A promising choice of spacetime regularisation comes from the causal set (CST) approach to quantum gravity. Using analytic results as
well as Markov Chain Monte Carlo and numerical integration methods we obtain the HH wave function in a theory of non-perturbative 2d CST.
We find that the wave function is sharply peaked with the peak geometry changing discretely with "temperature”. In the low temperature regime the
peak corresponds to causal sets which have no continuum counterpart but exhibit physically interesting behaviour. They show a rapid spatial
expansion with respect to the discrete proper time aswell as a high degree of spatial homogeneity due to extensive overlap of the causal past. While
our results are limited to 2 dimensions they provide a concrete example of how quantum gravity could explain the initial conditions for our
observable universe.</p>
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The Hartle-Hawking Wave Function in CST
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The Causal Set Hypothesis

CST has two fundamental building blocks:

@ The Causal Structure Poset (M, <)

e M is the set of events.

° <is:
@ Acyclic:x <yandy < x = x =y

@ Reflexive: x < x

@ Transitive:x < y, ¥y < Z= X <2

Sumati Surya (RRI) Hartle-Hawking

- L.Bombelli, J.Lee, D. Meyer and R. Sorkin, PRL 1987
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The Causal Set Hypothesis ~ L.Bombelli, J.Lee, D. Meyer and R. Sorkin, PRL 1987

CST has two fundamental building blocks:

@ The Causal Structure Poset (M, <)

@ Fundamental Spacetime Discreteness:

V has n ~ V /V, fundamental spacetime atoms.

Be Wise — discretise! — Mark Kac
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The Causal Set Hypothesis ~ L.Bombelli, J.Lee, D. Meyer and R. Sorkin, PRL 1987

CST has two fundamental building blocks:

@ The Causal Structure Poset (M, <)

@ Fundamental Spacetime Discreteness:

V has n ~ V /Vp fundamental spacetime atoms.

The underlying structure of spacetime is a causal set or locally finite poset (C, <)
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The Causal Set Hypothesis

Hawking-King-McCarthy-Malament Theorem

Causal Structure + Volume Element = Spacetime

The CST Hypothesis

Causal Structure — Partially Ordered Set

Spacetime Volume — Number

Offler + Number ~ Spacetime geometry

Sumati Surya (RRI) Hartle-Hawking October 2015
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The Causal Set Hypothesis

@ Spacetime emerges as a ‘random lattice” generated via a Poisson process:

Py(n) = exp=?Y(pV)", <N >=pV

)
INhb A“'rll i v
Jh :;3’1. f[l"f‘l.‘.

0 61 062 03 a4 08 98 oF o8 0% 1

@ Local Lorentz invariance: there are no preferred directions

L.Bombelli, J.Henson, R. Sorkin, Mod.Phys.Lett. 2009

@ Non-locality: A causal set need not be a fixed valency graph.
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A Continuum Inspired Dynamics for Causal sets

@ First principles: Quantum sequential growth using the quantum measure formulation.
F. Dowker, S. Johnston, S. Surya, J.Phys., 2010
R.Sorkin, arXiv:1104.0997

R.Sorkin and S. Surya, work in progress

@ Continuum Inspired Dynamics:

Zo = Zexpﬁs(c)

cefl

e S(C) is the Benincasa-Dowker action which is the analog of the Einstein-Hilbert action in CST.
D. Benincasa and F. Dowker, Phys.Rev.Lett, 104 2010

o 2 is a sample space of causal sets ( e.g.: the set of all past-finite causal sets)

Sumati Surya (RRI) Hartle-Hawking October 2015 6/25

Pirsa: 15100085 Page 10/55



Pirsa: 15100085

Analytic Continuation

@ Analytic continuation of a parameter 3: i3 — —f3

@ Space of Configurations 2 is unchanged.

@ MCMC for Qp:
@ =0
@ Inthe N — oo limit the Kleitman-Hothschild posets dominate.

@ The onset of the asymptotic regime occurs for N > 80
J. Henson, D. Rideout, R, Sorkin and S.Surya, arXiv:1504.05902, 2015

o First steps being taken to study 3 # 0 — a challenge!

@ Restriction to 2d orders: Qg C Qpn

° .H = 0 dominated by 2d Minkowski spacetime. G. Brightwell, J. Henson, S.Surya, Class.Quant.Grav, 25, 2008
e Phase transition from continuum to a crystalline phase. S. Surya, Class.Quant.Grav. 29, 2012

e Scaling near 3. suggests robust large N behaviour. L. Glaser, D. O'Connor and S. Surya, work in progress

Sumati Surya (RRI) Hartle-Hawking October 2015 7/25
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The Hartle-Hawking Prescription in CST

@ Continuum Proposal: Wy (hap. 2) = AST [ dg exp gl
M

[

e Path integral over Riemannian geometries on M.
e M is compact with a “final” boundary 1.

e |Initial spatial “zero” geometry, “a single point, which captures the idea of a universe emerging from
nothing.”

@ CST Proposal:

Sumati Surya (RRI) Hartle-Hawking
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The Hartle-Hawking Prescription in CST

@ Continuum Proposal: ~ Wy (fap,2) = A>" | dg exp

@ CST Proposal: W' (A7, 3) S exp~ w70 Max(C)| = N;

0

e The sum is over “discrete Lorentzian” geometries or causal sets.

e c € Qy is of finite cardinality, and the final maximal antichain Ay is such that | A;| = N;.

o Initial spatial geometry is a single element to the past of all other elements in c.
Nt
A
/ \
0000000000000 0000000000
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@ Qoq(N) C Q(N): Sample space of N-element 2d-orders.

® Sy4(c): 2d Benincasa-Dowker Action.
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@ Qoq(N) C Q(N): Sample space of N-element 2d-orders.

® Sy4(c): 2d Benincasa-Dowker Action.
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(24 the sample space of 2d Orders

@ A 2d order is an intersection of two linear orders

Base Set: S — (1,..., N).

u,vi € S=(1,...,N), i ... N

U= (uy,uz,... . Uj...U,...uNy), V=(vy,v2,...V,...V,...v) are lotal orders or chains.
2dorderC=UnNV: g = (uj,v) < ¢ = (y, y) iffu, < yyand v; < v;.

@ Examples:

e Discretisation of 2d (conformally flat) spacetimes.
@ Non continuum like 2d orders

e Sprinklings into finite regions of °M are 2d random orders

Sumati Surya (RRI) Hartle-Hawking
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(24 the sample space of 2d Orders

@ A 2d order is an intersection of two linear orders

@ Examples:

e Discretisation of 2d (conformally flat) spacetimes.

e Non continuum like 2d orders

(1,3,2,4,5)

L=
M= (2,4,1,3,5)

el o2 o3 o4

L =(1,2,3,4)
M= (4,3,2,1)

M L=(1,2,34)
l , M= (2,1,4,3)

o Sprinklings into finite regions of °M are 2d random orders
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(24 the sample space of 2d Orders

@ A 2d order is an intersection of two linear orders

@ Examples:

e Discretisation of 2d (conformally flat) spacetimes.

@ Non continuum like 2d orders

@ Sprinklings into finite regions of M are 2d random orders
@ U and V chosen randomly and independently from S.

@ Random 2d orders (~ 2M) dominate the uniform distribution.
Peter Winkler, Order 1, 317, (1985), El-Zahar and N.W. Sauer, Order 5, 239, (1988)
G. Brightwell, J. Henson, S.Surya, Class.Quant.Grav, 25, 2008
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The 2d Benincasa-Dowker Action for a Causal Set

@ N,:. # of n-element order intervals

1: L8@)(C) = N — 2Ng + 4Ny — 2N,

Sumati Surya (RRI) Hartle-Hawking October 2015 11/25
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The 2d Benincasa-Dowker Action for a Causal Set

@ Mesoscale /,

@ f(n,e)=(1—¢€)"

@ N,: # of n-element order intervals

11 :S@)(C) = N — 2Ny + 4Ny — 2N,

Sumati Surya (RRI) Hartle-Hawking October 2015
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The 2d Benincasa-Dowker Action for a Causal Set

@ Mesoscale /,

@ f(ne)=(1—¢€)"—2en(1 — )"

@ N,. # of n-element order intervals
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The 2d Hartle-Hawking Wave Function: Some Analytic Results

@ Wo(N —1) = Aexp~ P R =2eN(1 — 2¢) + 4¢°

Sumati Surya (RRI) Hartle-Hawking October 2015 12/25
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The 2d Hartle-Hawking Wave Function: Some Analytic Results
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The 2d Hartle-Hawking Wave Function: Some Analytic Results

ep = 3:
@ antichain
@ chain

Sumati Surya (RRI) Hartle-Hawking October 2015
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The 2d Hartle-Hawking Wave Function: Some Analytic Results

® p = 3 i
@ antichain

_ N-3N-3 my -
Vg N =3) = Aexp™T 3] 5 3 (N=2— 41—t + m)expP Mexpfilts )

0y=1Lo=1mM=my

@ chain

) (N=3—1) (N=3—£) (N—3—£y —£p)
Wi (N —3) = Aexp—#R > > S (N—2—¢ — b, — m)expfohrtee)
m=0

£q=1 p=1

P =24e*, mg=max(1,¢y + s — N +3), my=min(ty,£5)
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The 2d Hartle-Hawking Wave Function: Some Analytic Results

e p > 3 : Analytically challenging/impossible!

Sumati Surya (RRI) Hartle-Hawking October 2015 12/25
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Numerical Simulations

Calculation of (Sz(Nf)) using MCMC methods.

Numerical Integration: f(-,” dp’(Sg (Ny))

Estimation of Z,(Ny).
Normalise to get A.

Calculations performed for N = 50,¢ = 0.12,0.5, 1.
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Calculating (S3(N7)) using Markov Chain Monte Carlo Methods

The Move:
@ U= (uy,Up,...U...U...UN), V= (V1,Vo,...Vi,...Vj,...VN)
@ Pick a pair (v, v;) and (v, v;) at random and exchange: u; < y;
@ U = (Uy,Up,... Uj...Uj...UN), VI = (Vq, Vo,...Vj,... Vj,...VN)

e Example:

Up > Ug: U =(1,2,3,4),V = (1,2,3,4) — U’ = (1,3,2,4), V' = (1,2,3,4)

Sumati Surya (RRI) Hartle-Hawking October 2015
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Calculating (S3(N7)) using Markov Chain Monte Carlo Methods
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Calculating (S3(N7)) using Markov Chain Monte Carlo Methods

The Move:

@ U= (uy,Up,...Uj...U...UN), V = (g, Vo,... V...V
@ Pick a pair (u;, v;) and (y;, v;) at random and exchange: u; < u;
@ U = (Uy,Up,...Uj. .. Ujy o Uy), V= (Vg Voy oo Vi VLo V)

@ Example:

Up > Uz U= (1,2,3,4),V =(1,2,3,4) — U’ = (1,3,2,4), V' = (1,2,3,4)
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Expectation values for Covariant Observables

’ Covariance ~ Label invariance ]

Ordering Fraction: x = 2r/N(N — 1)
r: actual number of relations in the causal set, N(N — 1)/2 : maximum number of possible
relations

Dimension: Spacetime dimension v/s poset dimension
In 2d Myrheim-Meyer dimension dys —

Action (~ energy):

S(e)/h = 4Ne > (|

Nn: Abundance of n-order intervals

Height: Length of the longest chain ~ longest time-like distance

Time asymmetry: Difference in number of minimal and maximal elements

Sumati Surya (RRI) Hartle-Hawking October 2015 15/25
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Unconstrained N;: A Phase Transition S. Surya, Class.Quant.Grav. 29, 2012

(Sg(Nf))vs gfor N =50,e =0.12

0 05 1 15 2 25 3 35 4 45

p
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Continuum Phase

Fore =0.12, 8 = 0.1:
@ Ordering Fraction: < x >=0.498 £ 0.045. = < dyy >~ 2.
@ Height: < h >=10.217 + 1.401 (Height of V = 50 Minkowski interval is /100 = 10)
@ Time Asymmetry: < TA >= —0.007 4+ 2.411
@ Action: < S > /h = 3.845 + 1.256
@ Abundance of Intervals:

Comparison with Random Order: Interval Abundances

Random Ordet r—+—
zota=0,1
z0ta=0 4 +—w—i |
zota=00 o
zota=0 8

Volume

Continuum Phase closely resembles the random 2D order aka the Minkowski interval

Sumati Surya (RRI) Hartle-Hawking October 2015 17/25
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Crystalline Phase
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Crystalline Phase

Fore =0.12, 8 = 3.1
@ Ordering Fraction: < x >=0.589 £ 0.001. = < dyy >~ 1.7.
@ Height: < h >=4.631 £ 0.860
@ Time Asymmetry: < TA >= —1.327 + 5.156
@ Action: < S > /h = —38.000 + 3.197
@ Abundance of Intervals:

Change in Interval Abundance with zeta

T T T T
zota=0 +—t—ri

zota=0.1
zota=1.1 +—w—i =
zotam2.1 b—f—
zota=3.1

Sumati Surya (RRI) Hartle-Hawking October 2015 18/25
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The HH boundary condition: fixing N}

Ny
20 25 30 35

@ Phase transition for smaller N5.
@ As Nyincreases to N — 1, the phase transition is wiped out

@ Minimum value of 3. at Ny ~ 30 : 3¢(Nf) is not a monotonic function.

Sumati Surya (RRI) Hartle-Hawking October 2015
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Estimating Z,(\f)

@ Zy =5 Zy(Ny) : dominated by 2d random orders.
Ny

@ Simulate 1.138 x 10'° 2d random orders
@ Generate frequency profile for Ny up to 19

log[Zy(N )]

10°* e

10 1%
10°%
10 41
107"

log(Zy (N4}
0.1
0.001
1074
107
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Estimating Z,(\f)

@ Zy =5 Zy(Ny) : dominated by 2d random orders.
Ny

@ Simulate 1.138 x 10'° 2d random orders
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log[Zy(N )]

10°* e

10 1%
10°%
10 41
107"
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The Hartle-Hawking Wave Function.

YA2 Y2
2 0.6 0.6
e 0.5 0.5
02 0.4 0.4

03 0.3 0.3

Hiy a\ Al )

0100 30 a0 50/ " 10 20 30 40 56/°% 10 20 30 40 50
b) B =0 ©) B=75¢=0.12 (d) B =85,¢=0.12

g8 2 g% > g 2

0.5 0.5 0.5
0.4 04 04

0.3 0.3 0.3

1\ 03 03

.1 A /\ .

00072030 20 36 %% 10720 30 a0 36”%% 1020 30 a0 36"
(e) B =0.10,¢ = 0.5 f) B=0.11,¢ =05 (@ B =0.12,¢=0.5
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The Two Peaks

@ The Peak at Ny ~ 4
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The Two Peaks

@ The Peak at Ny ~ 23
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The Two Peaks

@ The Peak at Ny ~ 23

Sumati Surya (RRI) Hartle-Hawking October 2015

Pirsa: 15100085 Page 51/55



Pirsa: 15100085

Features of the second peak geometry

o Rapijg expansion from a single element to a large spatial slice: NVy/height ~ 6.

@ Homogeneity determined from causal past.

Probability

0.35F
030}
0.25f
020f
0.15§
0.10f
0.05f
0.00

141516 18 19 20 21 22 23 24 25 26 27 28

Average Size of Past

Size of past

@ Causal pasts of final elements maximally overlap

@ Non-manifold like.

Sumati Surya (RRI)

Hartle-Hawking

265
260
255
250
245
240

' 510 15 20

Final Element

October 2015
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Features of the second peak geometry

@ Rapid expansion from a single element to a large spatial slice: N¢/height ~ 6.
@ Homogeneity determined from causal past.
@ Causal pasts of final elements maximally overlap

@ Non-manifold like.
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Speculations and Open Questions

A concrete illustration of how physically interesting initial conditions can determined by a
theory of quantum gravity. Importance of non-continuum structures.

Comparison with DT and CDT: WET(L,A) ~ —AL=1/2 wEDT (L A) = exp~ VAL

2d is not 4d

@ 4d calculation could look very different
e Spontaneous dimensional reduction: - Steven Carlip, AIP Cont.Proc. 1483 (2012)

e “Graceful exit" ?

Large N limit: Non-trivial scaling with respect to N, ¢ and 2.

Lisa Glaser, Denjoe O'Connor and S.Surya, work in progress
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