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Abstract: <p>We analyse different classical formulations of General Relativity in the Batalin (Frad-<br>

kin) Vilkovisky framework with boundary, as a first step in the program of CMR [1] quantisation. Success and failure in satisfying the axioms will
allow us to discriminate among the different descriptions, suggesting that some are more suitable than others in view of perturbative quantisation.
Based on ajoint work with A. Cattaneo [2, 3] we will present the details of the application of the BV-BFV formalism to the Einstein-Hilbert and
Palatini-Holst formulations of General Relativity. We show that the two descriptions are no longer equivalent from this point of view, and we
discuss possible interpretations of this result.<br>
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BV-BFV approach to GR

joint work with A.S. Cattaneo

Plan of the [Talk

o Lagrangian field theories with boundary - Axematisation
The BV-BFV formalism - satalin (Fradkin) Vilkovisky
Overview on CMR quantisation - Cattaneo Mnév Reshetikhin

GR: Eihstein-Hilbert action - arxiv:1509.05762
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Lagrangian field theories with boundary

General framework for (regular) Lagrangian field theories on
manifolds with boundary.
e To a space time M assign a space of classical fields Fy 3nd
an action functional Sg.
o OM # ) —> 8S§) splits in a bulk and boundary term.
e Bulk tgrm — Euler Lagrange equations.
Boundgry term —» 1-form & on the boundary (Noether form).
FdM. rbstrictions of fields and jets. (pre-boundary)
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Lagrangian field theories with boundary

Simple example: S/ = [ 8,¢0%¢ dx with Fyy = C®(M).
M

5S¢l =—/A¢5¢dx+/3n¢5édx
M oM
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Lagrangian field theories with boundary

Simple example: S§) = [ 8,¢8#¢ dx with Fyy = C°(M).
M

85S¢ =—/A¢5¢dx+/6n¢'>6cbdx
M oM

with &, normal derivative. Interpret as L
o= / J¢ 5({) dx
oM
U

with Jp = ”(fb}aM and (¢, Js) € Fom. Then @ = 0 is symplectic.

M Fm — Fom (1)

Pirsa: 15100074
Page 5/38



Lagrangian field theories with boundary

e Regular theories — Gauge theories.

e Usual problems of gauge fixing and degenerate critical lofus.

e Standard approach to gauge theories is BRST secchi Roue: sto‘w;n.
Gauge fixing as operation in cohomology .
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Lagrangian field theories with boundary

e Regular theories — Gauge theories.

Usual problems of gauge fixing and degenerate critical lofus.

e Standard approach to gauge theories is BRST secchi Roue: S:oﬁ'ﬁru:in.
Gauge fixing as operation in cohomology .

Generalise to BV to treat more general symmetry distributions.
Gauge [fixing as integration over Lagrangian submanifolds.

» BV alse allows compatible treatment of boundary data.
BV-BFV formalism

[¢]
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BV formalism

Classical gauge theory: assign to M
e space aof classical fields Fpy

e classic action functional S
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BV formalism

Classical ga
® space ¢
e classic

e a distri

uge theory: assign to M
if classical fields Fy
action functional Sg)

bution Dy on Fy, representing symmetries:

X € r(Dm) > LxSf,'; -
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q*

BV formalism

Classical gauge theory: assign to M
e space of classical fields Fy
e classic action functional Sf

e a distribution Dy on Fy, representing symmetries: |
X € r(Dm) e LxSf,'; —

Dy Lie alggbra action — everywhere involutive.
“BRST-like], theory in the BV setting.

Embed all data in a Graded Symplectic setting.
Ghosts and Antifields.
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BV formalism
No boundary

BV framework: fiber coordinates of Dy, have degree 1.
Construct the shifted cotangent bundle Fp = T*[—1]Dy[1]. {Let
(-,-) be the|canonical Poisson structure, on .
Encode symmetries in a degree 1 vector field Qu on Fum , sugh

that [Qu, @u] = 0 (Cohomological). L

Theorem
If the theory is BRST-like, then the action Sy = S,ff, + (&7, Qu®)

is such that| if OM =0

(SM&SM) =0 (CME)

The Classical Master Equation.
Question: what if | have boundaries?
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BV-BFV formalism |

OM #

Fm endowefi with (—1)-symplectic form Q. Failure of (CME):

LQMQM = 05y + Tyam

with @ € Q}(Fan) and surjective submersion L

%M: ]:M — -FBM

restriction (J# fields and normal jets to the boundary.
(pre-boundary)

Consider @ = 6&. This form is degenerate.
Question: is it presymplectic?
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BV-BFV formalism

Assume Ker(@) subbundle on Fap and that we can perform
symplectic reduction.

Theorem (Cattaneo Mnev Reshetikhin)

The BV data (Fm, Sm, Qm,2m) induces the following:

o A surjective submersion my: Fp —* Fgy. to the sympiectic
(Y

reduction of Faum.
o A degree 1 vector field Qa such that
drm Qi = Q3. and [Q3y: Qom] = 0.
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BV-BFV formalism

Assume Ker(@) subbundle on Fsp and that we can perform
symplectic reduction.
Theorem (Cattaneo Mnev Reshetikhin)

The BV data (Fm, Sm, Qm,2m) induces the following:

o A surjective submersion Ty : Fy — Fay. to the sympiectic
Y

reduction of Fom.
o A degree 1 vector field QP such that

drmQYr = Qoum. and [Qde Q5m] =0
o A (0)-symplectic form w8y on Fayy with & = ThWI -
o A degree 1 functional S8y such that

Q‘) de ot (SSdM

satifying (CM E).
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BV-BFV formalism

The induced data on the boundary (F5y,, S5uss @ @om) dJﬁnes
what is usu:rlly called a BFV structure.

Cohomological resolution of (coisotropic) submanifolds
(constraints|in the phase space), modulo gauge symmetry.

We defined a BV-BFV theory on M. L
If 3a3,, such that wdyy = gy the theory is Exact.

Advantage ¢f the BV-BFV machinery: compatibility formulas

(] AT
10y M =6SM + TCEM

; (MCME)
(Sm, Sm) =27" Som

i1 view of quantisation and axiomatisation.

Pirsa: 15100074
Page 15/38



—q—

Quantisation Overview
BV Setting, OM = 0}

BV formalism provides a framework for gauge fixing and contfol
over gauge fixing independence.
Definition (finite dimensions)
BV Operatdr: A on a (—1)-symplectic graded manifold (F,w)
such that 8

o Az —
o A(fg) = Afg +fAg £ (f,8)w

Gauge fixing: integration over Lagrangian submanifolds L.
BV theorems:

f:Ag:—_>/f:0
c

Af =0 = / f invariant under deformations of £
5
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Quantisation Overview
BV Setting

A-exactness for f = ei°M <> Quantum Master Equation:

1
> (Sw1, Sw)s = ilASM =0 (QME)

solve order ry order in £ (if possible). Sy depends on A.
Lowest ordef is (CME).

Remark
(CME) mas sense in oo-dimensions, even if A is not well defined.

Path integrals and A defined via perturbative expansions.
What happens when OM # @ and (CME) fails?
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Quantisation Overview
BV Setting

A-exactness for f = en"M <= Quantum Master Equation:

%(SM,SM)W — ihASy =0 (QME)

solve order l:-y order in fi (if possible). Sy depends on A.
Lowest ordef is (CME).

Remark |
(CME) maf®s sense in co-dimensions, even if A is not well defined.

Path integrals and A defined via perturbative expansions.
What happens when &M # 0 and (CME) fails?
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Quantisation Overview
BV-BFV

Assume: exact BV-BFV theory. First step: quantise the boundary
symplectic manifold.

o Genera| assumption (CMR): Polarisation in F3y, such thit
Fu = YV x B, with B space of leaves of the polarisation.
Hilbert|space: functions on B. &

o Simplelexample on T*N: polarisation separates p and g
coordinates, B = N.

o Idea: Quantise the boundary action S° to a boundary
operater D = S%a, —if'z,—d%).

Modified Quantum Master Equation:

DeiSM — (H2A + D) er™ =0 (MQME)

and D2 = 0.
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Quantisation Overview
BV-BFV

Assume: exact BV-BFV theory. First step: quantise the boundary
symplectic manifold.

o Genera| assumption (CMR): Polarisation in Fj,, such th
Fum = V x B, with B space of leaves of the polarisation.
Hilbert|space: functions on B. /s

o Simple|example on T*N: polarisation separates p and g
coordinates, B = N.

o Idea: Quantise the boundary action S to a boundary
operatgr D = S%(q, —ilzs).

Modified Quantum Master Equation:

t

3

Deisu = (H2A + D) es™ =0 (MQME)

and D2 = 0.
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Quantisation Overview
BV-BFV

Gauge fixing is controlled by the cohomology of D: choose
lagrangian submanifold £ € Y and define

v, _—_]ef:SM e C°(B) I @)
/v

submanifold| is a D-exact term, and the state itself is D-closed.

the state associated to the boundary. Changing the Lagrangian
The Hllbert[space is the cohomology of D in degree zero.

Remark
The key information is the compatibility between bulk and

boundary: (MQME)
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Questions:
BV-BFV ax

quantisatior)!

General Relativity

what about General Relativity? Does it satisfy th

oms? If yes, can we use the CMR approach to
>

[{7]
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Einstein Hilbert Action

Variational problem for the EH action on a d + 1-dimensional
Manifold

Sy / V=g(Rlg] -2\ 3)
M

g any Lorentzian metric, A the cosmological constant.

Symmetries|are given by Diffeo(M) and, infinitesimally, by I'(JUTM).

The theory |s BRST-like. Therefore we have § € r[1]( T™):

1
Qe=Lg Q5= 5[&5]

C
The BV-extended action on T*[-1](PR4,1(M) © [[1]T™) is

i 1 :
Sey = SeH + / g'leg + 5 / e g€ (4)

M M
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Einstein Hilbert Action

Variational problem for the EH action on a d + 1-dimensional
Manifold

Gi= / V=2(Rlg] - 2\)
M

g any Lorentzian metric, A the cosmological constant.

Symmetries|are given by Diffeo(M) and, infinitesimally, by I'(J.J

The theory |s BRST-like. Therefore we have § € r[1(T™):

1
Qe=Leg Q6=5[Ed

The BV-extended action on T*[-1)(PR(4,1)(M) © T[1] T™) is

. 1. :
GEM — SEt / g'leg + 5 / e g€’ (4)
M M

Page 24/38



———
Einstein Hilbert Action

Arnowitt Deser Misner

Now &M #\(. ADM decomposition in a neighborhood of the
boundary, i.g. PR?C?:’I) Lorentzian metrics on M, with either
space-like or time-like signature on the boundary.

We can then rewrite the Einstein Hilbert action in terms of tilke
induced me1[ric ~ on &M and the extrinsic curvature K:

’ ¢ ? / 1 T
ngM - f.'pﬂ(e(K,,bK"b - K*)+ R° —2N)dx+g'Leg + 5:,{5'5]& (5)
M

Roman indices denote boundary directions.
The index n will denote the transversal direction.

Pirsa: 15100074 P 25/38
age 25



_

Einstein Hilbert Action

Arnowitt Deser Misner

Now OM #\(. ADM decomposition in a neighborhood of the
boundary, i.e. PR‘?‘ﬁ) Lorentzian metrics on M, with either
space-like or time-like signature on the boundary.

J
We can then rewrite the Einstein Hilbert action in terms of thie
induced metric v on @M and the extrinsic curvature K:

. ’ 1 |
S = [vAlKuk™ = k) + RO~ 2Nt 81 + teat’ O

M

Roman indices denote boundary directions.
The index n will denote the transversal direction.
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Einstein Hilbert Action

Theorem (d + 1 # 2)

The BV data for the Einstein Hilbert theory of GR in the boundary

ADM decomposition yields an exact BV-BFV structure.
The boundary action and two form read

J

GO / {_j: (nabnab = i 11‘rn2) + v (R° —2A) + €8, (Eq%) }E”

N/
oM
e / f’Ya!.‘Pbaasnén ~r {ac (7Cdnda) e (007Cd)ncd — €0; (5C‘Pa) }EJ-
oM

wl =€ / 526N, + 06700,

oM
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Nim = “éj (j!m m ’Ylm’Y'jjij)

en =—-2{ng"™ — £77 (B*Xa— Xn)E"}
Ya = 2%ab {g“’” -+ ”fbaﬁagT”" - %“/baXaEn}
L = bR

" =n¢&

L Ny =

the projection to boundary fields, and

~ 2¢ 1 s
iy =1 16 L et = Al Yt tabgn
Jlm — {T] (...fm 2V([Bm)) \/’5 (73!'}% - fim") D) g S

4 #L tbngn .___..l_.,,_. B 35) tnnen
e —\/_’_T. € (ﬁ(i’)’m)b AT I'Timﬁb) g 5 PR 171’m. b g S
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with

4

Nm = “\éj (j!m o 'Ylm'Yﬁjij)

0o =—2{ng"™ — 507" (X2 — Xn)E"}
ﬁ P, - 2'7ab {gTbn e ,.fbaﬁagfnn e :—g”fbax.zfn}

Ml -
5 =£b+7ba.‘3a£n
& =n¢"
\7ab = Hfab W

the projection to boundary fields, and
) ; 2eq fl ot b IR )
= {77 (-.i'm — 2V(J‘Bm)) \/'}' YalYbm T YimYab | & S

<

1 5. gt — 2 ( By — g tmBeb’
B(JW‘m)b— d';'"i'}’imﬁb &t i \/; (IMm) — d’_’_’ijl’m b g
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Canonical Analysis and Boundary Gauge Symmetry

Extract relevant information from S2:

(projected) canonical constraints
558 € ( b 1 2 %) s
=— (N?*N, - —T? | + A (R°-20) =}
n d—1
56 gh=0 \/’_Y
658 c d i .
56 = — 0O, (’)‘ dnda) — (07 )Nea = Ha Y
gh:
and residuall gauge symmetry on the boundary:
. 2 2 A
(W] (Qd)'y #—_—-\/-‘:)’(n — c—j—:-ETTn)E p= L£~7
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with

f

Nm = ﬁ (j!m —"Yfm'}’gjij)

0n =—2{ng"™ — 17 (B’Xa— x0)€"}
@, = 2925 {gTbn o ,Ybaﬁangn e baXaEn}

TM
ﬁ gb =£b +,ybaﬁa€n
& =mel
&Yabr ' = Yab (Y

the projection to boundary fields, and

~ 2¢ 1 b
i 2| i s b i Yab fabgn
J;m = {7] (_.,'m 2V[1ﬁm)) __ﬁ (’Tal"{bm A=y Yim") ) g S

- — m — = | BuBm) — 5= 1mBsB
\/;T_ € (ﬁ(;‘}m)b d Vi Bb) 3 Vel (1Pm) — 37 ImPb
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Palatini Holst action

The PH tetrad formulation of gravity is a variational problem
the action

SpH = f Ty [e A e A Fu] + ATx(e)
M
i J
The fields are a (co-)tetrad e: TM —> V and a principal SCH3, 1)

connection . Internal space (V,n), and {u;} basis of eigenvectors
of n:

.T.,[u,- A uj N\ Ug N U;] = | €jjkl ’YU:(K Njl -
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Palatini Holst action

The PH tetrad formulation of gravity is a variational problem for
the action

SPH = / i, [eAeA Fu)+ ATr(e*) (6)

e ;
The fields are a (co-)tetrad e: TM —> V and a principal SCH3,1)
connection . Internal space (V,n), and {u;} basis of eigenvectors
of n:

“ 2 e U
LTy [ui A uj A Ui A ur] = | €kt + ZTi(kMY | -

7 is the Barbero-lmmirzi parameter.
Extra term proportional to ¥ is a boundary term.
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Palatini Holst action

Symmetries|are given by diffeomorphisms and internal gauge.
Proposition

Let P — M be a G principal bundle and let A be a connection onj it.
Consider any| degree 1 vector field € on M, and any associated vect
bundle V with typical fiber the g module Vg, denote by p the

representatiop. Let ¢ € Q°[1](M,adP) be a degree 1 function and".{eﬁne

Q a vector field on the graded manifold
Ap @ Q°(M, V) @ [(T[1]M) & Q°[1](M, adP)

by
QA= teFa—d.c Q¢=L'§'¢—p(c)¢

Qc = 3ueeFa—3lecl Q¢ = 36, ¢

Then [@, Q] =0, and QSpy = 0 when ® = e.
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Palatini Holst action

So the BV-ttended action reads:

PH— EAEAF)+T&' (teFoo — duc)w' (L'g’e—-[::,e])eT}Jr

(9)

1
+§j 1by (bebst—[C’ C])f-"}'1'/?[5..5.]&3t
M

M
And we haye
Theorem |
Such a BV bction on a manifold with boundary M does not define

2 BV-BFV theory.

The pre-boundary 2-form fails to be pre—symple(?tic. .
No compatibility between bulk and BFV resolution of constraints.

CMR procedure as it is cannot be adopted.
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nterpretation and Some Questions

The interpretation of this result is still open.

It states a fundamental difference of the BV theories.
Question: to what extent should we consider classically equiyalent
theories to be actually physically equivalent?

Quantisation takes into account what happens outside of the
critical locus.
Question: what about Half Shell Localisation: d,e =07
This is poss|bly even more singular. Also it raises questions about
how to condistently implement Lagrange multipliers.

Question: Mo do other theories of gravity behave?

We have analysed other theories and the situation is complex.
Apparently the better behaved non-metric theory is

MacDowell-Mansouri gravity (in progress).
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CMR axioms for a gauge theory to be BV-BFV distinguish bejween
classically equivalent theories.

Diffeomorphism as an external gauge theory tells about allovgd
couplings and potentials.

Use this to

First step towards CMR quantisation of gravity as a gauge theory.

Outlook

Lonstruct BV-BFV equivalent theories of gravity.
L
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Thanks!
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