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Abstract: <p>Modern numerical methods have revolutionized the practice of science, creating a third discipline between traditional theory and
experiment. Perhaps the most widely known and successful technique has been the Monte Carlo method in general, and the Metropolis agorithm in
particular. In this talk, | will present a new way of performing unbiased Monte Carlo simulations based on highly-accurate tensor network
contractions. The resulting technique inherits the legendary precision of tensor networks without any of the variational bias. From a Monte Carlo
point-of-view, the method can be seen as an aggressive multi-sampling technique where each sample may account for the vast majority of the entire
partition function resulting a a drastic reduction in sample-to-sample variance (in contrast to standard<br>

configuration-based Monte Carlo, where only a small subset of possible configurations are sampled). The presented results are all classical, though
applications to quantum systems and the sign problem will be discussed.</p>
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Motivation (to science)

Numerics has become a core way of performing
science, between theory and experiment.

Constantly, we discover new challenging
problems requiring improved tools and
algorithms

Some generic tools can be widely applied
(e.g. Monte Carlo)
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Motivation (to me, 5 years ago)

= the boss

(University of Queensland,
Australia, 2010)

Guifre Vidal
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Motivation

Monte Carlo

Unbiased (i.e. “exact”)
Error estimate
Easy to parallelize

Slow convergence, N1/2
Sign problem
Basis choices
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dynamics
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Motivation

Monte Carlo Tensor Networks

Unbiased (i.e. “exact”) Converge rapidly

: Very precise
Error estimate yp

Frustration, fermions,

Easy to parallelize :
yoPp dynamics

Slow convergence, N-1/2 Bias (variational error)
’

Require large bond-

Sign problem . _
dimension

Basis choices |
No error estimate

Pirsa: 15100073 Page 7/49



Pirsa: 15100073

Motivation
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Motivation

Monte Carlo Tensor Networks
), fermions
Easy to - ’
Difficult
ional error
Slow conve )
™. large bond-
o _ dimension
Basis choice

No error estimate

Page 9/49



New approach

* Previously, tried to improve (variational)
tensor networks using (variational) Monte
Carlo to accelerate calculations.

* Now, the reverse: Do (unbiased) Monte Carlo
and using ideas of how to do (direct)
renormalization of tensor networks.
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Monte Carlo

* Central idea is to sample a subset of a sum

<3

Var(z;)
Nrsmnplos

Crror =
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An example

One such sum is the partition function of a
classical statistical system

7 = Z e PE(S) (8 =1/kpT)
S
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Tensor network for Z
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Configuration-based Monte Carlo

* Typically, the partition function is used to
define the probability of a given configuration.
— Importance sampling

— Markov-chain algorithm for updating
configurations

* Metropolis algorithm, loop updates, cluster updates...

* From typical configurations we collect data for
expectation values |
E — Zs E(S)p(s)

W IC)
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Tensor network of a configuration
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Tensor network of a configuration
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Accuracy vs. number of samples

Nsn.mplos

AF — \/ Var(FE)

irsa: 15100073 Page 17/49



Accuracy vs. number of samples

Var(E)
Nsn.mplos

Number of independent samples
- cluster updates
- loop updates
- worm algorithm
- etc...
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Accuracy vs. number of samples

Var(FE)
Nsa.mplos

Number of independent samples
- cluster updates
- loop updates
- worm algorithm
- etc...
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Accuracy vs. number of samples

Sample-to-sample variance
- importance sampling
- partial summation

Nsa.mplos

Number of independent samples
- cluster updates
- loop updates
- worm algorithm
- etc...
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Tensor Network Monte Carlo

New idea: Perform multi-sampling.

For each bond in the tensor network we keep
some subset of D > 1 indices (and discard the
remainder).

To do this efficiently, ideas from TN
renormalization will have to be employed
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Renormalization

* “Renormalization” is a word that means many
different things

— Removing divergences from, e.g., QED

— Momentum-space renormalization (e.g. Wilson)

— Real-space renormalization (e.g. Kadanoff, etc...)
* Here, renormalization means approximating

one or more tensors as a simpler tensor (with
lower bond dimension) — “BLOCKING”
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Blocking schemes
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Projecting bonds
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Projecting bonds

L JH, a1l JiL
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Projecting bonds
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Cost function

* The error of the projection can be quantified
using the 2-norm of the “boundary” state

S| h & &
}HE}W]&H\UH\{

[ ]
[ ]

L
]
J
]
L
[ ]
L
[ ]

irsa: 15100073 Page 28/49



Optimal truncation

2
Error — H IMPS) — |MPS')

IMPS) = Y S| Li)| R;) I l \
Z TTTTI1

Keep biggest Schmidt coefficients

Error = g Ch

1 >D




Boundary-MPS renormalization
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Accuracy vs. bond dimension
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Downside: Variational error

_Boundary-MPS, D=2

Exact”

Magnetization

Ferromagnetic phase Paramagnetic phase

Temperature
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Downside: Variational error

Exact”

Magnetization

D=5

Ferromagnetic phase Paramagnetic phase

Temperature
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Tensor Network Monte Carlo

| CORE IDEA |

Randomly select which subspace
to keep during truncation steps
using Monte Carlo
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Tensor network Monte Carlo

For unbiased Monte Carlo, we need that the
result converges exactly in the limit of large
number of samples.

On average the projectors should do nothing:

SPIER
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Subspace selection

5] ZSH -

There are many such possibilities. We want to
find one that minimizes the expectation value of

the error.
2
Eror = ( | Mps) - [pps) )
2

b
1¢s

Pirsa: 15100073 Page 36/49




Subspace selection

* Select large singular values more often, small
one less often.

* Never select the same index twice.
* Multi-sampling

— Probability of sampling a collection is the product
of the probability of the individual parts

]’)(?:1 . 12) — ])(?1)])(?2) (11 # 12)
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Subspace selection
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“Perfect” sampling procedure

* |In each full-system sample, we calculate the
partition function with randomly selected
projectors.

O—0—0—0—0 o} h & e

* The results for Z are averaged over many,
fully-independent samples
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Observation #1

Tensor network Monte Carlo
inherits the accuracy of tensor
network methods.

Unprecedented small sample-to-sample
variance.

Accuracy vs. cost improves more
rapidly than N-1/2 of Monte Carlo
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Results: 2D classical Ising Model

s) = —J Z 88

<t,7>
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Observation #2

Tensor network Monte Carlo
is an unbiased Monte Carlo method

None of the variational bias of
tensor network methods

Sample-to-sample variance is greater
where the variational technique
struggles
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Markov Chain Sampling

* Shown results are for small systems

* For “perfect” sampling, need each sample to
account for majority of Z to obtain a good
projection basis and well-behaved sampling

— Bond dimension should increase with system size

* Markov-Chain sampling will overcome this
limitation
— E.g. standard Metropolis algorithm accounts for a
tiny fraction of Z each sample
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Generalizations

* TNMC sampling can be applied to other tensor
renormalization schemes

— MPS (2D classical), PEPS/TNS (3D classical...)

— TRG and HOTRG (2D, 3D...)
— etc...

* d-dimensional qguantum systems can be
represented by (d+1)-dimensional partition
functions called path integrals

— Also, Projector MC for zero-temperature q. systems
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Sign problem

* Quantum systems can have sign problem for
Monte Carlo

— Path integral may have negative signs, or phases

* TNMC naturally samples large parts of the

path integral, summing over positive and
negative terms within each sample

— Sign-problem resistant? (with sufficient D)
— LTRG has been demonstrated to work...
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Correct hybrid method

Monte Carlo Tensor Networks

Unbiased (i.e. “exact”) Converge rapidly

. Very precise
Error estimate yP

Frustration, fermions,

Easy to parallelize .
VAR dynamics

N e —Bias-{variationalerror—
?? Sign problem ?? Requiretarge-vork

—Basis-ehotees—
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Conclusions

Tensor Network MC may appeal to:

— Monte Carlo community for faster and more
accurate Monte Carlo

— Tensor network community for zero-bias
calculations and error estimation
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