Title: TBA
Date: Oct 02, 2015 11:00 AM

URL: http://pirsa.org/15100059
Abstract:

Pirsa: 15100059 Page 1/45



Vacua for quantum gravity

Marc Geliller

——

Pl

Renormalization in Background Independent Theories: Foundations and Techniques
PI, October 274 2015

Based on:
Dittrich, MG, 1401.6441
Dittrich, MG, 1412.3752
Bahr, Dittrich, MG, 1506.08571

Pirsa: 15100059 Page 2/45



Bottom-up approaches to quantum gravity

| =

* Gravity is space-time geometry, so quantum gravity could be quantum geometry
+ Description in terms of basic building blocks, i.e. quanta or atoms of geometry
(loop quantum gravity, group field theory, causal dynamical triangulations, ...)

* How does the smooth diffeomorphism-invariant space-time around us emerge?

~ What are the phases of spin foam models and are there phase transitions?

* How to extract physics and predictions?
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Bottom-up approaches to quantum gravity

| =

* Gravity is space-time geometry, so quantum gravity could be quantum geometry

+ Description in terms of basic building blocks, i.e. quanta or atoms of geometry
(loop quantum gravity, group field theory, causal dynamical triangulations, ...)

* How does the smooth diffeomorphism-invariant space-time around us emerge?
~ What are the phases of spin foam models and are there phase transitions?

* How to extract physics and predictions?

Loop quantum gravity and spin foams
* Holonomies and fluxes encoding extrinsic and intrinsic spatial geometry
+ Diffeomorphism-invariant Hilbert space supporting the holonomy-flux algebra
+# Derivation of quantum geometry (Ashtekar, Lewandowski, Rovelli, Smolin)

* Status of spin foam amplitudes: fundamental (what significance?) or auxiliary?

Pirsa: 15100059 Page 4/45



AL representation (Ashtekar, Isham, Lewandowski)

* Cyclic vacuum is a state with no excitations (no graph), (0| Xs(E)|0)aL =0,V S

Holonomy operators (associated to links of graphs) are creation operators

+ Spatial geometry vanishes in the vacuum: totally squeezed and degenerate state
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AL representation (Ashtekar, Isham, Lewandowski)

* Cyclic vacuum is a state with no excitations (no graph), (0| Xs(E)|0)aL =0,V S

* Holonomy operators (associated to links of graphs) are creation operators

+ Spatial geometry vanishes in the vacuum: totally squeezed and degenerate state
+ Discrete basis of excitations labelled by dual graphs

* Embedding of Hilbert spaces based on embedding of dual graphs
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AL continuum structures
« Graph Hilbert space Hr = L*(SU(2)*/SU(2)", dpsaar)
+ Inductive limit Hilbert space Hoo = UrHr/ ~ = I? (A/g,dpAL)
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AL continuum structures
« Graph Hilbert space Hr = L*(SU(2)*/SU(2)", dpsaar)
+ Inductive limit Hilbert space Hoo = UrHr/ ~ = I? (A/g,dpAL)

Gravity as a topological theory with defects (Bianchi, Freidel, Ziprick, MQG)
« Graph phase space P = (T'SU(?))L
+ Isomorphic to the phase space of GR with almost-everywhere flat connections
* Reconstruction of continuum fields from discrete holonomy-flux data
- AL gauge X(F)|0)aL = 0 and E(z) almost-everywhere vanishing
- BF gauge F(A)|0)gr = 0 and E(z) almost-everywhere flat
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AL continuum structures
« Graph Hilbert space Hr = L*(SU(2)*/SU(2)", dpsaar)
+ Inductive limit Hilbert space Hoo = UrHr/ ~ = I? (A/g,dpAL)

Gravity as a topological theory with defects (Bianchi, Freidel, Ziprick, MQG)
« Graph phase space P = (T'SU(?))L
+ Isomorphic to the phase space of GR with almost-everywhere flat connections
* Reconstruction of continuum fields from discrete holonomy-flux data
- AL gauge X(F)|0)aL = 0 and E(z) almost-everywhere vanishing
- BF gauge F(A)|0)gr = 0 and E(z) almost-everywhere flat
+ In the AL representation the defects generate geometry

* Here we look for a representation where the defects generate curvature

Quantum gravity as a TQFT with defects

* Need a Hilbert space supporting arbitrarily many excitations (defects) and the
observable algebra generating them
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Uniqueness (Fleischhack, Lewandowski, Okol6w, Sahlmann, Thiemann)
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Uniqueness (Fleischhack, Lewandowski, Okol6w, Sahlmann, Thiemann)
* Uniqueness of AL representation under technical assumptions, including
- Diffeomorphism invariance

- Weak continuity of exponentiated fluxes (i.e. the fluxes exist as operators)
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Uniqueness (Fleischhack, Lewandowski, Okol6w, Sahlmann, Thiemann)
* Uniqueness of AL representation under technical assumptions, including
- Diffeomorphism invariance
- Weak continuity of exponentiated fluxes (i.e. the fluxes exist as operators)
Very different from QFT, where there are many inequivalent representations

+ AL vacuum makes it difficult to construct semi-classical states: need condensates

Other possible representations

Introduce constant background geometry so that (0|Xs(E)|0)xs = E,

(Koslowski, Sahlmann, Varadarajan, Campiglia)
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Uniqueness (Fleischhack, Lewandowski, Okol6w, Sahlmann, Thiemann)
* Uniqueness of AL representation under technical assumptions, including
- Diffeomorphism invariance
- Weak continuity of exponentiated fluxes (i.e. the fluxes exist as operators)
* Very different from QFT, where there are many inequivalent representations

+ AL vacuum makes it difficult to construct semi-classical states: need condensates

Other possible representations

« Introduce constant background geometry so that (0|Xs(E)|0)xs = E,

(Koslowski, Sahlmann, Varadarajan, Campiglia)

* Dualize all the ingredients of the AL representation — BF representation
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BF representation

* Cyclic vacuum peaked on locally and globally flat connections, (0|F(A)|0)sr = 0
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* Vacuum is a physical state of topological BF theory

Pirsa: 15100059 Page 20/45



BF representation
* Cyclic vacuum peaked on locally and globally flat connections, (0|F(A)|0)sr = 0
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* Vacuum is a physical state of topological BF theory

+ Discrete basis of excitations labelled by simplices of the triangulation
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BF representation

* Cyclic vacuum peaked on locally and globally flat connections, (0|F(A)|0)sr = 0

* Wilson surface operators (exponentiated fluxes) are creation operators

* Vacuum is a physical state of topological BF theory

+ Discrete basis of excitations labelled by simplices of the triangulation

* Embedding of Hilbert spaces based on embedding of triangulations

* Cylindrical consistency allows to define a continuum Hilbert space ...
 ...and requires a discrete topology on the group (compactified flux space)
+ Provides a new realization of quantum geometry

“ Deals for the first time successfully with the gauge-covariant fluxes X (E, h)
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BF representation

* Cyclic vacuum peaked on locally and globally flat connections, (0|F(A)|0)sr = 0

* Wilson surface operators (exponentiated fluxes) are creation operators

* Vacuum is a physical state of topological BF theory

+ Discrete basis of excitations labelled by simplices of the triangulation

* Embedding of Hilbert spaces based on embedding of triangulations

* Cylindrical consistency allows to define a continuum Hilbert space ...
 ...and requires a discrete topology on the group (compactified flux space)

+ Provides a new realization of quantum geometry

“ Deals for the first time successfully with the gauge-covariant fluxes X (E, h)

* Coarse-graining of the fluxes and curvature-induced torsion (violations of Gauss)

Xegoegoe, #0 if ge # 1
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Simplicial LQG
* Triangulation A of d-dimensional spatial manifold ¥
* Graph I" dual to A
* Simplicial (gauge-covariant) fluxes

Connection degrees of freedom

o

 Curvature encoded in holonomies around (d — 2)-dimensional simplices (defects)
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Simplicial LQG
* Triangulation A of d-dimensional spatial manifold ¥
* Graph I" dual to A
* Simplicial (gauge-covariant) fluxes

Connection degrees of freedom

 Curvature encoded in holonomies around (d — 2)-dimensional simplices (defects)
* Moduli space of flat connections

Ao = {A€eA|F(A)=00nX\Ay 2}/G
= Hom('n'l (E\A(dﬁg)),G)/G
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Simplicial LQG
* Triangulation A of d-dimensional spatial manifold ¥
* Graph I" dual to A
* Simplicial (gauge-covariant) fluxes

Connection degrees of freedom

 Curvature encoded in holonomies around (d — 2)-dimensional simplices (defects)
* Moduli space of flat connections

Ao = {A€eA|F(A)=00nX\Ay 2}/G
= Hom('n'l (E\A(dﬁg)),G)/G

« Choose a tree in I', then Ay ~ G# '°®v* £ where ¢ labels the fundamental cycles

Page 27/45



Refinement

Wave functions 9{g¢} of fundamental cycle holonomies
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Refinement

* Wave functions 9{g¢} of fundamental cycle holonomies
« For a finer triangulation A’ > A, the graph I has more fundamental cycles
« States in ‘H/s arising from embedding of states in Ha must have finite norm

Pirsa: 15100059 Page 29/45



Refinement
* Wave functions 9{g¢} of fundamental cycle holonomies
« For a finer triangulation A’ > A, the graph I has more fundamental cycles
« States in ‘H/s arising from embedding of states in Ha must have finite norm

Inner product

+ Choose auxiliary (e.g. Haar) inner product (- |- )aux
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Refinement
* Wave functions 9{g¢} of fundamental cycle holonomies
« For a finer triangulation A’ > A, the graph I has more fundamental cycles
« States in ‘H/s arising from embedding of states in Ha must have finite norm

Inner product
+ Choose auxiliary (e.g. Haar) inner product (- |- )aux
* Choose regulated states ¢ of finite norm in this auxiliary product
+ Use vacuum as reference state to define

. {(¥1]|¥35)aux
— l _—
(‘d)l Id)?) 51:‘% (wﬂ'wf)aux

* For heat kernel regulated delta function states peaked on a,8 € G

(Waltos) = 6(a, B)
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Refinement
* Wave functions 9{g¢} of fundamental cycle holonomies
« For a finer triangulation A’ > A, the graph I has more fundamental cycles
« States in ‘H/s arising from embedding of states in Ha must have finite norm

Inner product
+ Choose auxiliary (e.g. Haar) inner product (- |- )aux
* Choose regulated states ¢ of finite norm in this auxiliary product
+ Use vacuum as reference state to define

. {(¥1]|¥35)aux
— l _—
(‘d)l Id)?) 51:‘% (wﬂ'wf)aux

* For heat kernel regulated delta function states peaked on a,8 € G

(Waltos) = 6(a, B)

(non-separable) Hilbert space

¢ Orthonormal basis 9(4}{g¢} = Hé(ae,gf) with (¥{a}|¥(sy) = 6({a}, {8})
¢

Ha = L® (Hom (m1(E\A-2)), G) , dptdiscrete)
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+ Choose auxiliary (e.g. Haar) inner product (- |- )aux
* Choose regulated states ¢ of finite norm in this auxiliary product
+ Use vacuum as reference state to define

. {(¥1]|¥35)aux
— l _—
(‘d)l Id)?) 51:‘% (wﬂ'wf)aux

* For heat kernel regulated delta function states peaked on a,8 € G

(Waltos) = 6(a, B)

(non-separable) Hilbert space

¢ Orthonormal basis 9(4}{g¢} = Hé(ae,gf) with (¥{a}|¥(sy) = 6({a}, {8})
¢

Ha = L® (Hom (m1(E\A-2)), G) , dptdiscrete)

Page 33/45



Quantization of the fluxes
* Discrete Hilbert space topology to accommodate flat vacuum and inductive limit

« Fluxes don’t exist as operators (cf. LQC and Bohr compactification)

« Exponentiated symplectic flow of the fluxes (Wilson surface operators)

R?w{qf} = ’ﬁb(gl:- ey Gily . G2 )
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Quantization of the fluxes
* Discrete Hilbert space topology to accommodate flat vacuum and inductive limit
« Fluxes don’t exist as operators (cf. LQC and Bohr compactification)

« Exponentiated symplectic flow of the fluxes (Wilson surface operators)
RiY{ge} = ¥(g1,...,9i, ..., gje))

« Spectrum of translation operator R®a = 9 on L? (U(l), dp.discrctc)
- Discrete if ¢ rational

g—1
Va,k = % Zz: eim{d’wa%—ntb SpeC(RQ) = {ein‘P | k=0,...,9— 1}

- Continuous if ¢ irrational

We, p = Ee"""wa+n¢ spec(R?) = {e"”| p € [0,2m)}
nei
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Inductive limit Hilbert space
* We have Hilbert spaces Ha on triangulations, and a partial order
* We can consider

inductive limit with refinement maps

LY
L4

coarser ... < A; 2 < A;1 < A; < AH—I < A-Hag -

yi
)

projective limit with projection maps

* The refinement maps satisfy all the required properties to define

Hoo = UAHA/ ~

with a cylindrically-consistent inner product inherited from Ha

" ”»
<

... finer
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Why different vacua and representations?

* Needed in order to describe phase transitions and condensation in QFT

+ Physical states of quantum GR will not be in the initial Hy;, Hilbert space ...

* ...but might be easier to reach starting from certain vacua
* Path integral dynamics is a projector onto physical states

* The path integral dynamics of LQG is spin foams, which is built upon BF theory
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3d quantum gravity with A # 0

* Classical groups get deformed (also in A = 0 Chern-Simons): no group picture

Focus on TQFT with defects
* Fractional quantum Hall effect and topological order: beyond Landau symmetry
breaking, long-range entanglement, ground state degeneracy, anyonic statistics

t
S7
/S

4
10 20
Magnetic Field (T)
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String-net condensation (Levin, Wen)

* Fixed-point wave functions satisfy axioms of unitary tensor categories

Pirsa: 15100059 Page 39/45



Closed Ribbon graph Hilbert space
* Take a closed 2d surface X
« Define Hy as span of colored fusion-compatible trivalent graphs in ¥ modulo

N

>—< =) F.
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Levin—Wen Hamiltonian

* Hamiltonian for lattice 3d TQFT
« Typically defined on honeycomb lattice as

H=—ZHn—ZHf

nodes faces

with H, = Nijk the fusion coefficients for three irreps

& >=’>=Z(F:3)“
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Levin—Wen Hamiltonian

* Hamiltonian for lattice 3d TQFT
« Typically defined on honeycomb lattice as

k/2
d; .
H=-) H,-) H; Hf=jgozid2ﬂg

nodes faces '

with H, = Nijk the fusion coefficients for three irreps

& >=’>=Z(F:3)“

¢ Theorem (Kirillov Jr.): (I'| [ He|I") = Zov(E x [-1,1];T,I")

faces

+ Torus ground state degeneracy = Z( >—4—< H H; >—‘—< > = (k + 1)2
7

faces
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* Quasiparticle excitations located at defects (e.g. vertices) and labelled by irreps
of Drinfeld center of category
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New framework and results
* Full continuum Hilbert space supporting curvature excitations
“ Allows for geometrical coarse graining of the fluxes (intrinsic geometry)
+ Diffeomorphisms as vertex displacement (in d = 2)
+ New take on the dynamics and extraction of physics
+ New realization of quantum geometry
* Same structures found in wider class of TQFTs (allows A # 0)

Generalizations and applications

* Quantum groups and A

* Non-commutative flux representation (space of generalized fluxes)

« Non-compact gauge groups
+ Cosmology
* Black holes
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