Title: TBA

Date: Oct 02, 2015 11:00 AM

URL: http://pirsa.org/15100059

Abstract:

Vacua for quantum gravity

Marc Geiller

Renormalization in Background Independent Theories: Foundations and Techniques PI, October $2^{\rm nd}$ 2015

Based on:

Dittrich, MG, 1401.6441 Dittrich, MG, 1412.3752 Bahr, Dittrich, MG, 1506.08571

0/17

Introduction

Bottom-up approaches to quantum gravity

- * Gravity is space-time geometry, so quantum gravity could be quantum geometry
- * Description in terms of basic building blocks, i.e. quanta or atoms of geometry (loop quantum gravity, group field theory, causal dynamical triangulations, ...)
- * How does the smooth diffeomorphism-invariant space-time around us emerge?
- * What are the phases of spin foam models and are there phase transitions?
- * How to extract physics and predictions?

1/17

Introduction

Bottom-up approaches to quantum gravity

- * Gravity is space-time geometry, so quantum gravity could be quantum geometry
- * Description in terms of basic building blocks, i.e. quanta or atoms of geometry (loop quantum gravity, group field theory, causal dynamical triangulations, ...)
- * How does the smooth diffeomorphism-invariant space-time around us emerge?
- * What are the phases of spin foam models and are there phase transitions?
- * How to extract physics and predictions?

Loop quantum gravity and spin foams

- * Holonomies and fluxes encoding extrinsic and intrinsic spatial geometry
- * Diffeomorphism-invariant Hilbert space supporting the holonomy-flux algebra
- * Derivation of quantum geometry (Ashtekar, Lewandowski, Rovelli, Smolin)
- * Status of spin foam amplitudes: fundamental (what significance?) or auxiliary?

1/17

Pirsa: 15100059 Page 4/45

AL representation (Ashtekar, Isham, Lewandowski)

- * Cyclic vacuum is a state with no excitations (no graph), $\langle 0|X_S(E)|0\rangle_{\rm AL}=0,\,\forall\,S$
- * Holonomy operators (associated to links of graphs) are creation operators
- * Spatial geometry vanishes in the vacuum: totally squeezed and degenerate state

2/17

Pirsa: 15100059 Page 5/45

AL representation (Ashtekar, Isham, Lewandowski)

- * Cyclic vacuum is a state with no excitations (no graph), $\langle 0|X_S(E)|0\rangle_{\mathrm{AL}}=0,\,\forall\,\,S$
- * Holonomy operators (associated to links of graphs) are creation operators
- * Spatial geometry vanishes in the vacuum: totally squeezed and degenerate state
- * Discrete basis of excitations labelled by dual graphs
- * Embedding of Hilbert spaces based on embedding of dual graphs

2/17

Pirsa: 15100059 Page 6/45

AL continuum structures

- * Graph Hilbert space $\mathcal{H}_{\Gamma} = L^2 \left(\mathrm{SU}(2)^L / \mathrm{SU}(2)^N, \mathrm{d}\mu_{\mathrm{Haar}} \right)$
- * Inductive limit Hilbert space $\mathcal{H}_{\infty} = \cup_{\Gamma} \mathcal{H}_{\Gamma} / \sim = L^2(\overline{\mathcal{A}/\mathcal{G}}, d\mu_{AL})$

3/17

Pirsa: 15100059 Page 7/45

AL continuum structures

- * Graph Hilbert space $\mathcal{H}_{\Gamma} = L^2 (\mathrm{SU}(2)^L/\mathrm{SU}(2)^N, \mathrm{d}\mu_{\mathrm{Haar}})$
- * Inductive limit Hilbert space $\mathcal{H}_{\infty} = \cup_{\Gamma} \mathcal{H}_{\Gamma} / \sim = L^2(\overline{\mathcal{A}/\mathcal{G}}, d\mu_{\mathrm{AL}})$

Gravity as a topological theory with defects (Bianchi, Freidel, Ziprick, MG)

- * Graph phase space $\mathcal{P}_{\Gamma} = (T^*\mathrm{SU}(2))^L$
- * Isomorphic to the phase space of GR with almost-everywhere flat connections
- * Reconstruction of continuum fields from discrete holonomy-flux data
 - AL gauge $X(E)|0\rangle_{AL}=0$ and E(x) almost-everywhere vanishing
 - BF gauge $F(A)|0\rangle_{\mathrm{BF}}=0$ and E(x) almost-everywhere flat

Pirsa: 15100059

3/17

AL continuum structures

- * Graph Hilbert space $\mathcal{H}_{\Gamma} = L^2 \left(\mathrm{SU}(2)^L / \mathrm{SU}(2)^N, \mathrm{d}\mu_{\mathrm{Haar}} \right)$
- * Inductive limit Hilbert space $\mathcal{H}_{\infty} = \cup_{\Gamma} \mathcal{H}_{\Gamma} / \sim = L^2(\overline{\mathcal{A}/\mathcal{G}}, d\mu_{\mathrm{AL}})$

Gravity as a topological theory with defects (Bianchi, Freidel, Ziprick, MG)

- * Graph phase space $\mathcal{P}_{\Gamma} = (T^*\mathrm{SU}(2))^L$
- * Isomorphic to the phase space of GR with almost-everywhere flat connections
- * Reconstruction of continuum fields from discrete holonomy-flux data
 - AL gauge $X(E)|0\rangle_{AL}=0$ and E(x) almost-everywhere vanishing
 - BF gauge $F(A)|0\rangle_{BF}=0$ and E(x) almost-everywhere flat
- * In the AL representation the defects generate geometry
- * Here we look for a representation where the defects generate curvature

Quantum gravity as a TQFT with defects

* Need a Hilbert space supporting arbitrarily many excitations (defects) and the observable algebra generating them

3/17

Pirsa: 15100059 Page 10/45

Uniqueness (Fleischhack, Lewandowski, Okołów, Sahlmann, Thiemann)

4/17

Uniqueness (Fleischhack, Lewandowski, Okołów, Sahlmann, Thiemann)

- * Uniqueness of AL representation under technical assumptions, including
 - Diffeomorphism invariance
 - Weak continuity of exponentiated fluxes (i.e. the fluxes exist as operators)

4/17

Pirsa: 15100059 Page 12/45

Uniqueness (Fleischhack, Lewandowski, Okołów, Sahlmann, Thiemann)

- * Uniqueness of AL representation under technical assumptions, including
 - Diffeomorphism invariance
 - Weak continuity of exponentiated fluxes (i.e. the fluxes exist as operators)
- \star Very different from QFT, where there are many inequivalent representations

4/17

Pirsa: 15100059 Page 13/45

Uniqueness (Fleischhack, Lewandowski, Okołów, Sahlmann, Thiemann)

- * Uniqueness of AL representation under technical assumptions, including
 - Diffeomorphism invariance
 - Weak continuity of exponentiated fluxes (i.e. the fluxes exist as operators)
- * Very different from QFT, where there are many inequivalent representations
- * AL vacuum makes it difficult to construct semi-classical states: need condensates

4/17

Uniqueness (Fleischhack, Lewandowski, Okołów, Sahlmann, Thiemann)

- * Uniqueness of AL representation under technical assumptions, including
 - Diffeomorphism invariance
 - Weak continuity of exponentiated fluxes (i.e. the fluxes exist as operators)
- * Very different from QFT, where there are many inequivalent representations
- * AL vacuum makes it difficult to construct semi-classical states: need condensates

Other possible representations

* Introduce constant background geometry so that $\langle 0|X_S(E)|0\rangle_{KS} = E_o$ (Koslowski, Sahlmann, Varadarajan, Campiglia)

4/17

Pirsa: 15100059 Page 15/45

Uniqueness (Fleischhack, Lewandowski, Okołów, Sahlmann, Thiemann)

- * Uniqueness of AL representation under technical assumptions, including
 - Diffeomorphism invariance
 - Weak continuity of exponentiated fluxes (i.e. the fluxes exist as operators)
- * Very different from QFT, where there are many inequivalent representations
- * AL vacuum makes it difficult to construct semi-classical states: need condensates

Other possible representations

4/17

Uniqueness (Fleischhack, Lewandowski, Okołów, Sahlmann, Thiemann)

- * Uniqueness of AL representation under technical assumptions, including
 - Diffeomorphism invariance
 - Weak continuity of exponentiated fluxes (i.e. the fluxes exist as operators)
- * Very different from QFT, where there are many inequivalent representations
- * AL vacuum makes it difficult to construct semi-classical states: need condensates

Other possible representations

- * Introduce constant background geometry so that $\langle 0|X_S(E)|0\rangle_{KS} = E_o$ (Koslowski, Sahlmann, Varadarajan, Campiglia)
- * Dualize all the ingredients of the AL representation → BF representation

4/17

Pirsa: 15100059 Page 17/45

BF representation

 \star Cyclic vacuum peaked on locally and globally flat connections, $\langle 0|F(A)|0\rangle_{\mathrm{BF}}=0$

5 / 17

Pirsa: 15100059 Page 18/45

BF representation

- * Cyclic vacuum peaked on locally and globally flat connections, $\langle 0|F(A)|0\rangle_{\mathrm{BF}}=0$
- * Wilson surface operators (exponentiated fluxes) are creation operators

5/17

BF representation

- * Cyclic vacuum peaked on locally and globally flat connections, $\langle 0|F(A)|0\rangle_{\mathrm{BF}}=0$
- * Wilson surface operators (exponentiated fluxes) are creation operators
- * Vacuum is a physical state of topological BF theory

5/17

BF representation

- * Cyclic vacuum peaked on locally and globally flat connections, $\langle 0|F(A)|0\rangle_{\rm BF}=0$
- * Wilson surface operators (exponentiated fluxes) are creation operators
- * Vacuum is a physical state of topological BF theory
- * Discrete basis of excitations labelled by simplices of the triangulation

5/17

BF representation

- * Cyclic vacuum peaked on locally and globally flat connections, $\langle 0|F(A)|0\rangle_{\rm BF}=0$
- * Wilson surface operators (exponentiated fluxes) are creation operators
- * Vacuum is a physical state of topological BF theory
- * Discrete basis of excitations labelled by simplices of the triangulation
- * Embedding of Hilbert spaces based on embedding of triangulations

5/17

Pirsa: 15100059 Page 22/45

BF representation

- * Cyclic vacuum peaked on locally and globally flat connections, $\langle 0|F(A)|0\rangle_{\rm BF}=0$
- * Wilson surface operators (exponentiated fluxes) are creation operators
- * Vacuum is a physical state of topological BF theory
- * Discrete basis of excitations labelled by simplices of the triangulation
- * Embedding of Hilbert spaces based on embedding of triangulations
- * Cylindrical consistency allows to define a continuum Hilbert space ...
- * ... and requires a discrete topology on the group (compactified flux space)
- * Provides a new realization of quantum geometry
- * Deals for the first time successfully with the gauge-covariant fluxes X(E,h)

5/17

Pirsa: 15100059 Page 23/45

BF representation

- * Cyclic vacuum peaked on locally and globally flat connections, $\langle 0|F(A)|0\rangle_{\rm BF}=0$
- * Wilson surface operators (exponentiated fluxes) are creation operators
- * Vacuum is a physical state of topological BF theory
- * Discrete basis of excitations labelled by simplices of the triangulation
- * Embedding of Hilbert spaces based on embedding of triangulations
- * Cylindrical consistency allows to define a continuum Hilbert space ...
- * ... and requires a discrete topology on the group (compactified flux space)
- * Provides a new realization of quantum geometry
- * Deals for the first time successfully with the gauge-covariant fluxes X(E,h)
- * Coarse-graining of the fluxes and curvature-induced torsion (violations of Gauss)

$$\mathbf{X}_{e_3 \circ e_2 \circ e_1} \neq 0 \ \text{if} \ g_\ell \neq \mathbb{1}$$

5 / 17

Pirsa: 15100059 Page 24/45

Configuration space

Simplicial LQG

- * Triangulation Δ of d-dimensional spatial manifold Σ
- * Graph Γ dual to Δ
- \star Simplicial (gauge-covariant) fluxes

Connection degrees of freedom

 \star Curvature encoded in holonomies around (d-2)-dimensional simplices (defects)

7/17

Pirsa: 15100059 Page 25/45

Configuration space

Simplicial LQG

- * Triangulation Δ of d-dimensional spatial manifold Σ
- * Graph Γ dual to Δ
- * Simplicial (gauge-covariant) fluxes

Connection degrees of freedom

- * Curvature encoded in holonomies around (d-2)-dimensional simplices (defects)
- * Moduli space of flat connections

$$\mathcal{A}_{0} = \{ A \in \mathcal{A} \mid F(A) = 0 \text{ on } \Sigma \backslash \Delta_{(d-2)} \} / \mathcal{G}$$
$$= \operatorname{Hom}(\pi_{1}(\Sigma \backslash \Delta_{(d-2)}), G) / G$$

7/17

Pirsa: 15100059 Page 26/45

Configuration space

Simplicial LQG

- * Triangulation Δ of d-dimensional spatial manifold Σ
- * Graph Γ dual to Δ
- * Simplicial (gauge-covariant) fluxes

Connection degrees of freedom

- * Curvature encoded in holonomies around (d-2)-dimensional simplices (defects)
- * Moduli space of flat connections

$$\mathcal{A}_0 = \{ A \in \mathcal{A} \mid F(A) = 0 \text{ on } \Sigma \backslash \Delta_{(d-2)} \} / \mathcal{G}$$

$$= \operatorname{Hom}(\pi_1(\Sigma \backslash \Delta_{(d-2)}), G) / G$$

* Choose a tree in Γ , then $\mathcal{A}_0 \simeq G^{\# \text{ leaves } \ell}$, where ℓ labels the fundamental cycles

7/17

Page 27/45

Refinement

 \star Wave functions $\psi\{g_\ell\}$ of fundamental cycle holonomies

8/17

Pirsa: 15100059 Page 28/45

Refinement

- * Wave functions $\psi\{g_\ell\}$ of fundamental cycle holonomies
- * For a finer triangulation $\Delta' \succ \Delta$, the graph Γ' has more fundamental cycles
- \star States in \mathcal{H}'_{Δ} arising from embedding of states in \mathcal{H}_{Δ} must have finite norm

8/17

Pirsa: 15100059 Page 29/45

Refinement

- * Wave functions $\psi\{g_\ell\}$ of fundamental cycle holonomies
- * For a finer triangulation $\Delta' \succ \Delta$, the graph Γ' has more fundamental cycles
- * States in \mathcal{H}'_{Δ} arising from embedding of states in \mathcal{H}_{Δ} must have finite norm

Inner product

* Choose auxiliary (e.g. Haar) inner product $\langle \cdot | \cdot \rangle_{\text{aux}}$

8/17

Pirsa: 15100059 Page 30/45

Refinement

- * Wave functions $\psi\{g_\ell\}$ of fundamental cycle holonomies
- * For a finer triangulation $\Delta' \succ \Delta$, the graph Γ' has more fundamental cycles
- * States in \mathcal{H}'_{Δ} arising from embedding of states in \mathcal{H}_{Δ} must have finite norm

Inner product

- * Choose auxiliary (e.g. Haar) inner product $\langle \cdot | \cdot \rangle_{\text{aux}}$
- * Choose regulated states ψ^{ε} of finite norm in this auxiliary product
- * Use vacuum as reference state to define

$$\langle \psi_1 | \psi_2
angle = \lim_{arepsilon o 0} rac{\langle \psi_1^arepsilon | \psi_2^arepsilon
angle_{
m aux}}{\langle \psi_1^arepsilon | \psi_1^arepsilon
angle_{
m aux}}$$

* For heat kernel regulated delta function states peaked on $\alpha, \beta \in G$

$$\langle \psi_{\alpha} | \psi_{\beta} \rangle \stackrel{\varepsilon \to 0}{\longrightarrow} \delta(\alpha, \beta)$$

8 / 17

Refinement

- * Wave functions $\psi\{g_\ell\}$ of fundamental cycle holonomies
- * For a finer triangulation $\Delta' \succ \Delta$, the graph Γ' has more fundamental cycles
- * States in \mathcal{H}'_{Δ} arising from embedding of states in \mathcal{H}_{Δ} must have finite norm

Inner product

- * Choose auxiliary (e.g. Haar) inner product $\langle \cdot | \cdot \rangle_{\text{aux}}$
- * Choose regulated states ψ^{ε} of finite norm in this auxiliary product
- * Use vacuum as reference state to define

$$\langle \psi_1 | \psi_2
angle = \lim_{arepsilon o 0} rac{\langle \psi_1^arepsilon | \psi_2^arepsilon
angle_{
m aux}}{\langle \psi_1^arepsilon | \psi_1^arepsilon
angle_{
m aux}}$$

* For heat kernel regulated delta function states peaked on $\alpha, \beta \in G$

$$\langle \psi_{\alpha} | \psi_{\beta} \rangle \stackrel{\varepsilon \to 0}{\longrightarrow} \delta(\alpha, \beta)$$

(non-separable) Hilbert space

* Orthonormal basis $\psi_{\{\alpha\}}\{g_{\ell}\} = \prod_{\ell} \delta(\alpha_{\ell}, g_{\ell})$ with $\langle \psi_{\{\alpha\}} | \psi_{\{\beta\}} \rangle = \delta(\{\alpha\}, \{\beta\})$

$$\mathcal{H}_{\Delta} = L^2\left(\operatorname{Hom}\left(\pi_1\left(\Sigma ackslash \Delta_{(d-2)}
ight), G
ight), \mathrm{d}\mu_{\mathrm{discrete}}
ight)$$

8 / 17

Refinement

- * Wave functions $\psi\{g_\ell\}$ of fundamental cycle holonomies
- * For a finer triangulation $\Delta' \succ \Delta$, the graph Γ' has more fundamental cycles
- * States in \mathcal{H}'_{Δ} arising from embedding of states in \mathcal{H}_{Δ} must have finite norm

Inner product

- * Choose auxiliary (e.g. Haar) inner product $\langle \cdot | \cdot \rangle_{\text{aux}}$
- * Choose regulated states ψ^{ε} of finite norm in this auxiliary product
- * Use vacuum as reference state to define

$$\langle \psi_1 | \psi_2
angle = \lim_{arepsilon o 0} rac{\langle \psi_1^arepsilon | \psi_2^arepsilon
angle_{
m aux}}{\langle \psi_1^arepsilon | \psi_1^arepsilon
angle_{
m aux}}$$

* For heat kernel regulated delta function states peaked on $\alpha, \beta \in G$

$$\langle \psi_{\alpha} | \psi_{\beta} \rangle \stackrel{\varepsilon \to 0}{\longrightarrow} \delta(\alpha, \beta)$$

(non-separable) Hilbert space

* Orthonormal basis $\psi_{\{\alpha\}}\{g_{\ell}\} = \prod_{\ell} \delta(\alpha_{\ell}, g_{\ell})$ with $\langle \psi_{\{\alpha\}} | \psi_{\{\beta\}} \rangle = \delta(\{\alpha\}, \{\beta\})$

$$\mathcal{H}_{\Delta} = L^2\left(\operatorname{Hom}\left(\pi_1\left(\Sigma ackslash \Delta_{(d-2)}
ight), G
ight), \mathrm{d}\mu_{\mathrm{discrete}}
ight)$$

8 / 17

Quantization of the fluxes

- * Discrete Hilbert space topology to accommodate flat vacuum and inductive limit
- * Fluxes don't exist as operators (cf. LQC and Bohr compactification)
- * Exponentiated symplectic flow of the fluxes (Wilson surface operators)

$$R_i^lpha \psi\{g_\ell\} = \psi(g_1,\ldots,g_ilpha,\ldots,g_{|\ell|})$$

9/17

Pirsa: 15100059 Page 34/45

Quantization of the fluxes

- * Discrete Hilbert space topology to accommodate flat vacuum and inductive limit
- * Fluxes don't exist as operators (cf. LQC and Bohr compactification)
- * Exponentiated symplectic flow of the fluxes (Wilson surface operators)

$$R_i^lpha \psi\{g_\ell\} = \psi(g_1,\ldots,g_ilpha,\ldots,g_{|\ell|})$$

- * Spectrum of translation operator $R^{\phi}\psi_{\alpha}=\psi_{\alpha-\phi}$ on $L^{2}\left(\mathrm{U}(1),\mathrm{d}\mu_{\mathrm{discrete}}\right)$
 - Discrete if ϕ rational

$$v_{lpha,\kappa} = rac{1}{\sqrt{q}} \sum_{n=0}^{q-1} e^{\mathrm{i}n\kappa\phi} \psi_{lpha+n\phi} \qquad \qquad \mathrm{spec}(R^\phi) = \left\{ e^{\mathrm{i}\kappa\phi} \,\middle|\, \kappa = 0,\ldots,q-1
ight\}$$

- Continuous if ϕ irrational

$$w_{lpha,
ho} = \sum_{n\in\mathbb{Z}} e^{in
ho} \psi_{lpha+n\phi} \qquad \qquad \operatorname{spec}(R^\phi) = \left\{e^{\mathrm{i}
ho} \,\middle|\,
ho \in [0,2\pi)
ight\}$$

9/17

Continuum Hilbert space

Inductive limit Hilbert space

- * We have Hilbert spaces \mathcal{H}_{Δ} on triangulations, and a partial order " \prec "
- * We can consider

inductive limit with refinement maps $\xrightarrow{}$ coarser ... $\prec \Delta_{i-2} \prec \Delta_{i-1} \prec \Delta_i \prec \Delta_{i+1} \prec \Delta_{i+2} \prec \ldots$ finer $\xrightarrow{}$ projective limit with projection maps

* The refinement maps satisfy all the required properties to define

$$\mathcal{H}_{\infty} = \cup_{\Delta} \mathcal{H}_{\Delta} / \sim$$

with a cylindrically-consistent inner product inherited from \mathcal{H}_{Δ}

10 / 17

Philosophy

Why different vacua and representations?

- * Needed in order to describe phase transitions and condensation in QFT
- * Physical states of quantum GR will not be in the initial \mathcal{H}_{kin} Hilbert space . . .
- * ... but might be easier to reach starting from certain vacua
- * Path integral dynamics is a projector onto physical states
- * The path integral dynamics of LQG is spin foams, which is built upon BF theory

11 / 17

Pirsa: 15100059 Page 37/45

3d quantum gravity with $\Lambda \neq 0$

* Classical groups get deformed (also in $\Lambda = 0$ Chern–Simons): no group picture

Focus on TQFT with defects

* Fractional quantum Hall effect and topological order: beyond Landau symmetry breaking, long-range entanglement, ground state degeneracy, anyonic statistics

12 / 17

Pirsa: 15100059 Page 38/45

String-net condensation (Levin, Wen)

 \star Fixed-point wave functions satisfy axioms of unitary tensor categories

13 / 17

Pirsa: 15100059 Page 39/45

Closed Ribbon graph Hilbert space

- * Take a closed 2d surface Σ
- \star Define \mathcal{H}_{Σ} as span of **colored** fusion-compatible trivalent graphs in Σ modulo

$$j = \left(\begin{array}{c} i & j \\ \hline i & = d_j \delta_{i,0} \end{array} \right)$$

14 / 17

Levin-Wen Hamiltonian

- * Hamiltonian for lattice 3d TQFT
- * Typically defined on honeycomb lattice as

$$H = -\sum_{ ext{nodes}} H_{ ext{n}} - \sum_{ ext{faces}} H_{ ext{f}} \hspace{1cm} H_{ ext{f}} = \sum_{j=0}^{ ext{k}/2} rac{d_j}{\sum_i d_i^2} H_{ ext{f}}^j$$

with $H_{\mathrm{n}} \equiv \mathcal{N}_{ijk}$ the fusion coefficients for three irreps

15 / 17

Levin-Wen Hamiltonian

- * Hamiltonian for lattice 3d TQFT
- * Typically defined on honeycomb lattice as

$$H = -\sum_{ ext{nodes}} H_{ ext{n}} - \sum_{ ext{faces}} H_{ ext{f}} \hspace{1cm} H_{ ext{f}} = \sum_{j=0}^{ ext{k}/2} rac{d_j}{\sum_i d_i^2} H_{ ext{f}}^j$$

with $H_{\rm n} \equiv \mathcal{N}_{ijk}$ the fusion coefficients for three irreps

- * Theorem (Kirillov Jr.): $\langle \Gamma | \prod_{\text{faces}} H_{\text{f}} | \Gamma' \rangle = \mathcal{Z}_{\text{TV}} (\Sigma \times [-1, 1]; \Gamma, \Gamma')$
- * Torus ground state degeneracy = $\sum_{\vec{j}} \left\langle \right\rangle \left\langle \left| \prod_{\text{faces}} H_{\text{f}} \right| \right\rangle \left\langle \right\rangle = (k+1)^2$

15 / 17

Levin-Wen Hamiltonian

- * Hamiltonian for lattice 3d TQFT
- * Typically defined on honeycomb lattice as

$$H = -\sum_{ ext{nodes}} H_{ ext{n}} - \sum_{ ext{faces}} H_{ ext{f}} \hspace{1cm} H_{ ext{f}} = \sum_{j=0}^{ ext{k}/2} rac{d_j}{\sum_i d_i^2} H_{ ext{f}}^j$$

with $H_n \equiv \mathcal{N}_{ijk}$ the fusion coefficients for three irreps

- * Theorem (Kirillov Jr.): $\langle \Gamma | \prod_{\text{faces}} H_{\text{f}} | \Gamma' \rangle = \mathcal{Z}_{\text{TV}} (\Sigma \times [-1, 1]; \Gamma, \Gamma')$
- * Torus ground state degeneracy = $\sum_{\vec{j}} \left\langle \right\rangle \left\langle \left| \prod_{\text{faces}} H_{\text{f}} \right| \right\rangle \left\langle \right\rangle = (k+1)^2$
- * Quasiparticle excitations located at defects (e.g. vertices) and labelled by irreps of Drinfeld center of category

15 / 17

Levin-Wen Hamiltonian

- * Hamiltonian for lattice 3d TQFT
- * Typically defined on honeycomb lattice as

$$H = -\sum_{ ext{nodes}} H_{ ext{n}} - \sum_{ ext{faces}} H_{ ext{f}} \hspace{1cm} H_{ ext{f}} = \sum_{j=0}^{ ext{k}/2} rac{d_j}{\sum_i d_i^2} H_{ ext{f}}^j$$

with $H_n \equiv \mathcal{N}_{ijk}$ the fusion coefficients for three irreps

- * Theorem (Kirillov Jr.): $\langle \Gamma | \prod_{\text{faces}} H_{\text{f}} | \Gamma' \rangle = \mathcal{Z}_{\text{TV}} (\Sigma \times [-1, 1]; \Gamma, \Gamma')$
- * Torus ground state degeneracy = $\sum_{\vec{j}} \left\langle \right\rangle \left\langle \left| \prod_{\text{faces}} H_{\text{f}} \right| \right\rangle \left\langle \right\rangle = (k+1)^2$
- * Quasiparticle excitations located at defects (e.g. vertices) and labelled by irreps of Drinfeld center of category Page 112 sur 146

15 / 17

Conclusion

New framework and results

- * Full continuum Hilbert space supporting curvature excitations
- * Allows for geometrical coarse graining of the fluxes (intrinsic geometry)
- * Diffeomorphisms as vertex displacement (in d = 2)
- * New take on the dynamics and extraction of physics
- * New realization of quantum geometry
- * Same structures found in wider class of TQFTs (allows $\Lambda \neq 0$)

Generalizations and applications

- * Quantum groups and Λ
- * Non-commutative flux representation (space of generalized fluxes)
- * Non-compact gauge groups
- * Cosmology
- * Black holes

16 / 17

Pirsa: 15100059 Page 45/45