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Abstract: <p>I will describe entanglement entropy of a cap-like region for a generic quantum field theory residing in the Bunch-Davies vacuum on
de Sitter space. Entanglement entropy in this setup is identical with the thermal entropy in the static patch of de Sitter, and it is possible to derive a
simple relation between the vacuum expectation value of the energy-momentum tensor trace and the RG flow of entanglement entropy. In particular,
renormalization of the cosmological constant and logarithmic divergence of the entanglement entropy are interrelated in this setup. These findings
are confirmed by recovering known universal contributions for a free field theory deformed by a mass operator as well as correct universal
behaviour at the fixed points. In three dimensions the renormalized entanglement entropy is stationary at the fixed points but not monotonic.
Computational evidence that the universal “area law' for a conformally coupled scalar is different from the known result in the literature will be
given, and | will argue that this difference survivesin the limit of flat space.</p>
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RG flow of entanglement entropy
on spheres

OB, Dean Carmi, Michael Smolkin. arXiv:1504.00913

Chris Akers, OB, Shimon Yankielowicz, Michael Smolkin to appear soon
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Outhne

Introduction and motivation

Local Modular Hamiltonians for general QFTs and a perturbative
calculation of EE

Our setup - cap like region (sphere) inside a Sphere

Massive scalar in even and odd dimensions and comparing to
known results

RG flows - Renormalized EE in 3d, Renormalization of EE and the
partition function in 4d

Minimally VS. Conformally coupled Scalar (free and interacting)
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Introduction - I*]nl;mgl(‘m(‘nl. |*an.|'()|).\-

A system is in some state |’(/)>

Write the state as |’l/)> o HA X HB
+  Where Y] is the entangling surface which separates the regions
) (Y]

von Neumann Entropy: SFF‘ — —Tr [[)A log /)A]‘

Diverges and dominated by short distance (UV) correlations near the

Trace out degrees of freedominB P 4 = TI"B

entangling surface.

. , t=const
Introducing a short distance cutoff -

Leading divergence gives an Area law A
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Path Integral rep. of the reduced density matrix

- The ground state wave functional is:

Pp(tp=0,2)=d¢¢(x)

Y ((/)() (.’L')) — / nge—S((/))

Jtg=—00

To get the complex conjugate integrate to (g = 00

- The density matrix is written as

[p]f/)u(/){, =V (d)() (:L.)) v (d)f) (fI;))
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o’
0

The find the reduced density matrix of some region A:

+ Integrate freely in the complement region B by stitching

/
| : oo () = ¢y () R
inaesion-B, - 0 A e b
00
+ Boundary conditions in region A give the b
. . . gl PPl [AYAYAY AW
matrix element of the reduced density matrix e = P
U O
oC

M~
o
.
—
M~
A
...

tp=00
loklssss = / Dge=5(®) H d(¢(+0,2) — ¢4 ()0 (¢ (—0,2) — ¢_ (x))
Jt

E=—0Q

TEA >
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To calculate EE we need SEE = —Ir [[)A log PA]

Usually people do the replica trick:

0
Sp=——1I1ogtrap’%|,—
A n ElIrAPA|In=1

This amounts to the calculation of:

Z’H;
Z‘H,

1
where /. is the partition function on the n-sheeted Riemann surface
-> Conical singularity at the entangling surface

traps =

Subtleties for the scalar. R = 47 (1 — n)dsy + O(1 — n)z

some comments towards the end!
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Wave-guide geometries  HerbergWilerek

&Hung Lewkowyez Myers,Smolkin

+ The manifold is R2 X )

The entangling surface Y] is then located at the origin

. . 2_ . . .
Replica trick - replace /2“ with C, a two dimensional cone
angular excess 27‘[‘((}{ = 1)

ds® = (dr)? +r*(d#)? 0<r<oo 0<6<2ra

O(2) symmetry - continue to any real value of (v , find EE o — 1
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For a fermion in 4d and R2 X S 2 (entangling surface is a sphere):

: As, 5 1
S = Y + Asx, (27;), Rz) log (md) + -

+ The first term is the Area law, it’s coefficient depends on the cutoff,
hence it is not universal

+ Inside the coefficient of the log divergence:
The first term is the universal area law.

The second term is purely geometric. This what we expect to get in the
massless limit (CFT)
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» In 5d we now have R2 X 83

o'
O

This time the universal part will be finite, and in the large radius limit:

G Asx | | 9 ] o1 3 m 3 M ._a-rp .
S = — [ —— { m* m —— - ——p
3(4m)3/2'363 5()7 410t v ome Je

oe
0

Leading divergent term is again the non universal area law

o'e
.

Now the finite term is universal (in 4d it was the coefficient of the log
divergence!)

oe
0

Again we see a universal area law, but this time also some other effects
not just from the entangling surface

ols
0

(I did not forget about the scalar..)
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Generalize for CE'T's and deformations

For a scalable surface ~ any surface that changes with one scale R
and for CFTs we can generalize what we just saw(Liu & Mezei)

* R?2 R 21 (E) J
O - ) 5 +(-1) 78y’ +0 (R)

. R(Z_Q R2 d—2
b(svvn S §d—2 s R ﬁ i e (_1) B

R 52
Sg.:) log 3 + const + O (ﬁ)

Polynomial divergences depend on choice of the cutoff as before

In even d the coefficient of log divergence (does not depend on the state of

the system)

In odd d the finite term is the universal term

10
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In odd d the universal term in a CFT is finite, and no general
structure is known for it

However in even d the universal term is the coefficient of a log
divergence that comes from the cutoff near the entangling surface:

In 4d Solodukhin’s formula

a4

S(ullivm':-;etl) — i 12 E. Cq / i2 I
150 J, EoVYER o [ dovhs

(L(z)) = Z bpIpn(z) — 2(—1)%aE,g(:1:) + B'V ,J*(x)

In higher dimensions we expect the same story to hold
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+ As we saw in the examples before there are other universal terms
when going outside the fixed point! (universal area law..)

+ There is evidence (weak and strong coupling) that the general terms
can appear (Hertzberg, Wilczek & Hung,Lewkowycz,Myers,Smolkin):

mP=2-2" log mé for even D

Suniv =7 (D, n 2-! |
v (D, n) / mP—2-2n for odd D

dP 2o/ h[“curvature”]” x
.

VoL

Where for example for 72 = () we get the universal area law

D -2
n=-—5— lisagain the purely geometric term that gives the
universal contribution in the fixed point (CFT)

U
e
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CE'Ts and S|)||(‘|'(‘ (‘nl;mgling surfaces

- Casini, Huerta and Myers have shown that for CFTs:
EE for a sphere entangling surface in flat space can be
mapped to thermal entropy of the static patch of de Sitter.

- This mapping gives the universal terms of sphere entangling
surfaces

- Wick rotating the static patch of de Sitter we get a sphere S %
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For theses special cases the universal term corresponds to
universal term in the free energy of the theory when we put it
on a sphere

In even d the coefficient of the log divergence is given by the
A-type (trace) anomaly

In odd d the universal term is the finite term of the free energy.
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c-theorems and ELK

+ c-theorems (weak version):
For a QFT that flows between fixed points, exists some ¢ function such
that:

CUv 2 CIR
+ In 2, 3 and 4d there are proofs for c-theorems.
+ In 3d this is the F-theorem:

Conjectured:
Free Energy on a 3-sphere decreases monotonically along RG-flows.

Proved:
Universal term in the EE of a disk in flat space
(CHM to the free energy == EE of a disk at the fixed points)
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# In 3d proof only using EE
+ In 4d no proof using EE

+ Sphere in flat space / Sphere free energy isolates correct universal

term in 3d and 4d

+ Is there a proof in 3d without EE?
Is there a proof in 4d using EE?

If yes, can we generalize to higher d?
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Relation between RG flows and ELE

- Some EE region with one scale R, and a mass scale m

We change the scale R

1
™m O

For example in 3d for a massive scalar for mR>>1:

T T 1
S«-;('.n ar R)=0= = =Ml = ———
scalar (MF2) = ax — emR — 75 —p
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['he first law of EK
+ Define the Entanglement/Modular Hamiltonian in region A:

Kiqs=—logpa
#  Usually the modular Hamiltonian is not local and not known explicitly..

- Small change of the state: ﬁA = pA + 5PA

- Assuming the new density matrix is normalized:
Tr [[3,4] T b [5/)14] =0
0Sgr = —Tr[0pa] — Tr [0palogpal = Tr [6pa K 4]

The first law:

5SEE = (5<KA>

Pirsa: 15100030 Page 19/47



The first law 1n differential form Rosenhaus. Smolkin

Sgg = —Tr(palogpa) = Tr(paKa) = Tr (pK ) = (0| K 4/|0)

See = (0 / DoK qe™ I(X9u2,9)
S 5K
qr T L O S | ; T —Ra) = -
r(pa) =Tr(e7"4) =1= S G ogH” 5
dSEr ) v a\z) ( ') e
(S(};H}‘/(F:) rn (}I _I_ (71“’”(1))]{>
+ Geometric perturbation: 5SEE 2 M (T (q-)]Q

(Sg;u/(:;:) ) AR
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| .ocal modular Hamiltonian

Write again the reduced density matrix:

(¢ |oale) = (e [Tr(j0)Og.)= [ Doexp[-1(9)]

P0" 0" )=¢,
G0 n" )=¢_
For a plane entangling surface it will be local for ANY QFT (Kabbat
& Strassler "94): A
Y
=u v p B | ¢+ X
KA=—2Jrme,‘:, n =—2Jrffdxx7;m<=—.. = >
A 20 ¢

K is now the integrated generator (“Hamiltonian”) of rotation in the

plane * — Yy . The 27 is the inverse temperature, or the euclidean
time.

Important - O(2) symmetry around the entangling surface

20
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Our setup

Goal: RG flows of EE where we can do explicit calculations.
At the fixed points of the flow correct universal terms in 3d and 4d

What do we need:

We want a setup with O(2) symmetry such that the modular
Hamiltonian is local and known for all QFTs (not just CFTs) as it was
for a plane.

Half a plane is local but there is no built in scale (no anomaly in even

d).

Wave guides do have a scale but we also want the correct universal
terms in 3d and 4d
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Start with the static patch of de Sitter and Wick rotate to get §¢ with
radius R.

The metricis:  ds® = R cos? fdr® + df? + sin® 0dS23 _,
Entangling region is half a Sphere (one scale)

Myers & Sinha have shown that for a CFT
in even d:

}{dbEE

4(-1)2"la

and also in odd d we get the free energy
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The modular Hamiltonian is: . n” = (Rcos )19,

K = =97 / :]“’m/&ﬂ.,”’.v + (:I E“ — (')7_
JA
The sphere is maximally symmetric and from this we get that for any
QFT: 1.C

(T (x)) = gty v () ('~ <T>

C is a function of the theory (coupling mass scales etc.)

Taking a specific variation (scaling of the sphere) we get:

y (5 (ngg . ¢ =
2/ dixg" (£) ——— = —R;f—]? = R d;x’.l = /(l":l'\/{}(.‘I?){T(.’I?)I\))\

59" (@)

+ We can now use the following relation (Osborn & Shore):

— [ @/ 9NT ()T (2)) conserved = 4% Rffs (55)

- We contract with 1/ f " and integrate to get K in the correlator
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Finally we get the simple relation:

dSer QR d
REEE — _ T
dR A

Holds for any QFT (not just a CFT!).

In these RG flows we don’t have some external scale, so the theory
flows between fixed points as we change the radius of the sphere

In this setup it is enough to calculate a one-point function to get the
exact flow in our case.

It is also easy to show that in this setup EE equals the thermal
entropy of the static patch of de Sitter for all QFTs:

Ser = G W) s )B(U_ F)

Pirsa: 15100030 Page 25/47



lixample -Conformally Coupled Free Scalar

. 1 . | S 1 g £, = ...d —2
[ = — (0 2 —7 ,2 2 — (.R 2 ' 4(d — 1
./.S‘" (2( ®)° + 5™ o* + 25 ) ; _d((d_ 1))
YT T R?
0 o0 d—2

rl'r — .(][H/rl‘f”/ — ﬁl‘”’-ud‘)u .

(,-")(~V"3 + &R + 'mg)(,-‘)
(1 —d/2)D(AND(d — 1 — A)
m(4m)d/2 Rd-2

A= dTl + 'i\/(m.h’)2 ~ 3
The VEV is calculated as the coincident point limit of the Green’s
function on a sphere

Cy = m? R*(¢°) (¢?) =

sin (g(d —2)))

Divergent for even d, finite for odd d

Dimensional Regularization - pole for even d is a log divergence,
which will correspond to universal terms.
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Conformal Scalar in odd d

Plugging odd we get a finite result, and thermal factor in bold:

d—1
11 5

Tr(mh')"zcoth(‘ir\/msz -1/4) (=)"2 H ((d/2 = 1/2 = j)? — 1/4 + m?R?)

('r_’) — D 190 21 [ ¢
Vm2R? —1/4 (4m)4/21 (4) e

Expanding in mR>>1 (large radius, low temp.).

d+41

agiar  (d-2)d-4) (=)«
dR mR> 1 24(d — 1) (.z]ﬂ)d-;,") T (d)

7 2

R Asm®2 + ..

This result matches with the universal area law of half a plane in flat
space for a conformal scalar

Not a good c-function candidate - diverges in the flat space/IR limit.

Therefore some subtraction is needed to get a reasonable flow - REE?

26
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Renormalized EIX (RELK) in 3d in flat space
+ EE for a disk in flat space at fixed points Sep = Cq _13 — ¢
i )

+ To extract the universal terms, REE was proposed (Liu & Mezei), in 3d:

dSEE
dR

REE =R _SEE

+ At a fixed points this gives the free energy (REE = ¢g)

+ Gets rid of terms like mR are are that pollute the constant term.

- | P 7
+ Casini and Huerta have shown (using strong sub-additivity): SED g 0

(REE' = RS}1)

+ Integrating this we see explicitly the F-theorem:

OO
SN TR /"
J 0
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I for a massive scalar in 3¢
RELE | | 3

S”(or REE’/R) on a sphere: REE for a disk in flat space:
d’s
d(mR)?
y »mR REE Klebanov et al. arXiv:1207.3360:
0.5 10 >0
0.06) !
REE — 0 00 REE - 0
mR—0 0.04! mIt—0
.10 }
0.03
0.15 0.02
0.01
] ) b ‘ 9
0.2 0 ()00 1 5 3 4 (mR)

+ §” changes signs, hence REE is not monotonic!

‘ ‘ . ‘ . /!
+ It is also easy to see that in our setup REE is stationary, meaning;: Sw' — 0

In flat space numerical calculations show that REE is not stationary (right
figure).
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Conformal Scalar in even d

+ Divergent log term, UV physics does not care about the (thermal)

state:
pdSui _ (do—2)(do—4)  (: )do/2+1 A,
- 12(d — 1) (47)(do=2)/2T (’—f';’)
> r ]2 by ( - 2 ‘!l 4
doeo  (do —6) (5dg — 18dg + 4) po—4 : I (—,) m .
40—4 oo+ 24 < - | log(mo
8 (”’ i |2“ h,")' } i (f(]((l(] 2)‘3 Ii’d“ o = (“H)

Leading term in mR>>1 is the universal area law that does not care
about curvature, this result again matches known results for half a
plane in flat space for a conformal scalar

For example in 4d the area law vanishes (important for the rest of the
talks) for the conformal scalar
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We can check also the leading curvature correction.

We can see that very close to the surface the metricis R? x S92
and perturbation:

-~

ds? = (1 — 555 +...)r2d7? + R2d§? + (1 -

e +.. R2d03_,

The leading perturbation of the wave guide geometry is important

This amounts to the following integral:
08 = % i d? x | (l‘!—zyﬂ (TH (z,y)K)Yhy(2,y) + O(h?)

We again find full agreement between the area law and the first
curvature correction and our results, for the conformal scalar.
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So far we discussed the log divergent term but eventually our
equation relates the vev of renormalized stress energy tensor and a
renormalized EE.

In fact renormalization is needed to see the RG flow and the anomaly

at the fixed points (massless scalar in the UV to empty theory in the
IR).
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Renormalization of EE 1in 4d

+ Up to now we’ve written EE using bare parameters.

We should account for counter terms such that the partition function
is finite.

The most general action we can write for a massive scalar in a curved
background (for a renormalizable theory) is (Brown&Collins):

ol
*

. | 9 | p b
S,'i;" - / (2 (0d)” +4 ‘)‘Hi"z(,")') F =&R &° + Ao + KoR _“,,
J §d

\l [ 1 2
- = ( hupa(v’”qm F2a0F4 + coR )

~
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+ We write the relation between bare and renormalized params in
minimal subtraction scheme - we only subtract poles:

. A
_ , d—4 p_ 4 _ ATy
Ao =p (A + T a™ ) Ko = ud— (h: + ]h; 17”2)
. Yy

+ We fix A), knowing that the following is finite

K. A
P_ 4 oud—4mt =2

0 02 MY e :
—'H?-z'( . '/S”’ (”‘; '<f_fl»‘2) + /:‘.d- ‘1”1272,' ‘ ([_ I)

om? d-4

since LHS is the renormalized vev
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Plugging the bare one-point function:

. m? m? 9 " |
(p°) = 872 (d—1) 1672 (log(4mR*) —p(A) =9 (3—=A)+1—74) +O(d —4)
—1
we get A-p = W ) Rp = 0

We can now impose a physical condition:

The decoupling of the massive theory in the IR, mR — o0
where the massive scalar is integrated out meaning (7'(z)) — 0

This sets the rest of the renormalized coupling such that we get:

mA

2 |
T(z)) = 21log(mR) — Y(N) — ¥(3 — A P e
2)) 1(57r2( O8UnH) = pA) el )+3(mR)2) 24072 R4
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: 3. pdSgz _ (mR)? _ (mR)* _ imR°(¥'(3-N-v'(N) 1
And finally in 4d: R=5 B 12 24/ (mR)?—1/4 90

=> Renormalization of the partition function corresponds to
renormalization of the EE.

It is interesting to see what we get for 8d:

3m?

R?

1Sr sl
REPEE _ . 4 1960RS (m" +

log (mR) + -+ -
R ) og (mR) +

So even after renormalization we can identify the universal terms
which are now finite

Works in 4d and higher, reproducing the correct anomaly in the UV.

We have checked all of our results also for the Dirac fermion, in odd
and even d.
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Conformally VS Minimally coupled Scalar

For the scalar in flat space there is a family of conserved stress-
energy tensors:
Y 1 o s e AT
,I}(;i) — d;r,(/)dr/(!l) — 5.(];“; (()n (/)d” (fb) s £ (();1.()1/ e g,m/()(r()”) (/)
When coupling to a background metric 6 is the coupling to
curvature :

& / Rp? C S

where & = () is the minimal coupling

and & = &, is the conformal coupling for which Tﬁ = (
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In a curved background different choices of the coupling correspond
to different theories

+ In flat space the choices correspond to different, arbitrary, choices of
the stress-energy tensor for the same theory.

ofe
0

The difference between the definition in flat space is just a total
derivative term:

qS)e pl0) £3a8a¢2
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Debate -
The modular hamiltonian does have a boundary at the entangling
surface:

Should the contribution from boundary term that come from the
total derivative term be taken into account?

How is this related to our results?
We started with a curved background and chose the conformal
coupling.

Our results for the universal area law match with the results for half

a plane in flat space

For example in 4d we saw the area law vanishes, which agreed with
the result when taking the boundary into account and choosing the
conformal coupling!
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Moreover, if we repeat our calculation for different couplings to
curvature (not conformal) we will get back the universal area law in
4d

This means our results are in favour of a difference between the
minimally coupled and conformally coupled also in flat space.

[t's important to note that on the sphere the improvement term
vanishes, because ((b2> is constant! So why do we get different
results?

The vev does depend on the coupling and this results in different

universal area law for different couplings:

g I'(1=d2(A)(d=1-2A) . 7 :
(¢%) = T (dm) 2RI sin (E(d —2)))

] — 1 : | -1 1
A= - + "-\/(’“R)z i S A= - +'f'-\/(m.f\’.)2 s - (£.=1)

2 4

d(d — 2)
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The interacting O(N) Model

nn:_;uin:_; Chris Akers, OB Yankiclowiez.Smolkin

g o

Metlitski, Fuertes, Sachdev calculated EE for half a plane in flat space.

: 1 f t .
For this model: L= 5(3(/))2 K 5(/)2 =i

They did an € expansion around 4d to get a flow from the Gaussian
(free) fixed point to the Wilson-Fisher (interacting) Fixed point.

They used the replica trick and analyzed the partition function with a
conical singularity. e =0

log(md)

L ~

ce fi i iversal ; y :
In free fixed point universal area law:  §§. . =~ =

In interacting fixed point no divergence:  d.Swilson-Fisher ~ O(1)

10
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But I just said in 4d the universal area law depends on the choice of
coupling to gravity even in flat space, so did they make a choice?

* Yes!

Before discussing our case - Casini et. al also used the perturbative
method by Rosenhaus and Smolkin to explain the difference between
the free and interacting fixed points:

52
T(x)T(0)|0) = ps — (55—/15

w

38 = — Al (0
: d(d —1)(d - 2) ,/‘ b

# [bg is the result for the minimally coupled scalar

+ Their explanation:
although the result is the same as for the free scalar for both fixed
points we need to choose different couplings
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+ Back to Metlitski et. al:

+ We claim:

In the Gaussian fixed point is the same as for the minimally coupled
scalar.

So in the limit of 4d their universal area law did not vanish..

ole
0

In the interacting fixed point they were forced to add an effective
operator on the singular surface
=> In the IR fixed point (interacting) this flows to the conformal

coupling, hence no area law!

+ So in the UV they basically assumed minimally coupled scalar..
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We can do even better:

The operator they were forced to introduce is a coupling to the
entangling surface in the replica trick from loop calculations:

gL P*
2-2

Where they found that at the Wilson-Fisher fixed point the
renormalized coupling is:

2T
= — n—1

We can easily see that this is simply the conformal coupling(!):

R =47(1 — n)dg + O(1 — n)?

1t [ e [
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We can go back to their calculation and fix it from the outset:

o 1 B Rk :
[ = / d*x (5((')!,(;))”) + ”2’ ¢ + gﬁq’)”))

Now taking into account the delta function in the curvature

Results in:

NAsm?log 6 , Nm?As

0S =
2 6(4m) &l 47

log &

Which again vanishes for the conformal scalar..
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Our story (no replica trick) -

Take the same theory and put it on a sphere (arbitrary f ).

Calculate () ~ <T>

S Ry to — 1 - D
[ — /8,1[5(()("))2 -+ %G)Z ~+ 5(71 + ']I(')R(;Ibz + %(cb")z]

We're doing large N, so we couple to some auxiliary fields and get:

) —N(%Tl']n(ﬂ)ﬁ—];,; % -1,
Z = | Dse B i e '

where: Oy = -0+t +n.R+s

Saddle point approximation in large N: 5 = ug(z|O; *|2) + noR
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Summary

oJs

Our main result was the simple, analytic, relation between the VEV of
the stress-energy tensor and EE:

dSEE Q,gR(H_] d
R = — g &
dR d dR )

no replica trick!

We checked explicitly that the results match known results in the
literature for the free scalar and fermion

Showed that our result indicate also flat space knows about curvature
coupling!

We showed that REE does not give a good c-function on a sphere. Is
there some other c-function?
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