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Abstract: <p>The accumulated intuition from the last decades of research on quantum entanglement is that this phenomenon is highly non-robust,
and very hard to maintain in the presence of de-cohering noise at non-zero temperatures. In recent years however, and motivated, in part, by a quest
for a quantum analog of the PCP theorem researches have tried to establish, at least in theory, whether or not we can preserve quantum entanglement
at "constant” temperatures that are independent of system size. This would imply that any quantum state with energy at most, say 0.05 of the total
available energy of the Hamiltonian, would be highly-entangled.</p>

<p>A conjecture formalizing this notion was defined by Freedman and Hastings : called NLTS - it stipulates the existence of locally-defined
guantum systems that retain long-range entanglement even at high temperatures. Such a conjecture does not only present a necessary condition for
guantum PCP, but also poses a fundamental question on the nature of entanglement itself. To this date, no such systems were found, and moreover,
it became evident that even embedding local Hamiltonians on robust, albeit "non-physical” topologies, namely expanders, does not guarantee
entanglement robustness.</p>

<p>In this study, refute the intuition that entanglement is inherently fragile: we show that locally-defined quantum systems can, in fact, retain
long-range entanglement at high temperatures. To do this, we construct an explicit family of 7-local Hamiltonians, and prove that for such local
Hamiltonians ANY low-energy state is hard to even approximately simulate by low-depth quantum circuits of depth o(log(n)). In particular, this
resolves the NLTS conjecture in the affirmative, and suggests the existence of quantum systems whose low-energy states are not only
highly-entangled but also "usefully"-entangled, in the computational-theoretic sense. </p>
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Expansion of a distribution

D is some distribution.
m is a parameter.

Consider the graph on the boolean cube with edges
of length m.

Choose set S, of measure at most %2 according to D.

Consider the boundary of S.
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Expansion of a distribution

D is some distribution.
m is a parameter.

Consider the graph on the boolean cube with edges
of length m.

Choose set S, of measure at most %2 according to D.
Consider the boundary of S.

Minimize over all such S.
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expansion: CATs !

® Simple examples:
® The CAT-state

® Quantum code-states

® Uniform super-positions over classical codes.
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Suppose U generates the cat state a=| 00..0>+ | 11..1> in depth d, from
the state |000..0>

Consider the “negative” cat state b=|00..0>-|11...1>.

Then U*b is supported on strings with Hamming weight at least 1.
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Suppose U generates the cat state a=|00..0>+ | 11..1> in depth d, from
the state |000..0>

Consider the “negative” cat state b=|00..0>-|11...1>.
Then U*b is supported on strings with Hamming weight at least 1.
Write the local Hamiltonian \sum_i |1><1|_i, and conjugate by U.

It assigns 0 energy to (a) and non-zero energy to (b), so it distinguishes
them.

But H can only couple terms of Hamming distance at most 2”*d,whereas
(a),(b) differ only on terms |x><y |, where x,y differ by n.

Therefore d is at least log(n).
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D is some distribution.

m is a parameter.

Consider the graph on the boolean cube with edges
of length m.

Choose set S, of measure at most %2 according to D.

Consider the boundary of S.
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D is some distribution.

m is a parameter.

Consider the graph on the boolean cube with edges
of length m.

Choose set S, of measure at most %2 according to D.

Consider the boundary of S.

Minimize over all such S.
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- Claim: distributions of bounded-
depth circuits expand well

® Start from a quantum-state generated by depth-d
circuit U:

* Consider it's induced distribution on the first n qubits.
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- Claim: distributions of bounded-
depth circuits expand well

® Start from a quantum-state generated by depth-d
circuit U:

® Consider it's induced distribution on the first n qubits.

® [t's expansion is lower bounded by 1/2, for m at least
24% .
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® Fix some set constant measure S, and its complement T :
e Cat= |S>+ |T>
¢ Cat-=|S>- |T>.
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® Fix some set constant measure S, and its complement T :
e Cat=|S>+ |T>
¢ Cat-= |S>- |T>.

® Suppose |Cat> is generated by depth-d circuit U.

* Apply degree- -Vn Chebyshev polynomials to the conjugated
projections on 0, U |0><0| U*
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Lower-bounds
Proof

Fix some set constant measure S, and its complement T :
e Cat=|S>+ |T>
¢ Cat-= |S>- |T>.

Suppose | Cat> is generated by depth-d circuit U.

Apply degree- -Vn Chebyshev polynomials to the conjugated
projections on 0, U |0><0| U*

This LH distinguishes Cat, and Cat- states significantly:

® [t has a constant spectral gap.
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Lower-bounds

Fix some set constant measure S, and its complement T :
e Cat=|S>+ |T>
¢ Cat-=|S>- |T>.

Suppose | Cat> is generated by depth-d circuit U.

Apply degree- -Vn Chebyshev polynomials to the conjugated
projections on 0, U |0><0| U*

This LH distinguishes Cat, and Cat- states significantly:

® [t has a constant spectral gap.

On the other hand, it is merely 2d * \In -local.

=S and T share a large boundary for m at most 24 * Vn .
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Locally-testable codes




* We know that low-expansion distributions (a la
CAT) are hard.

* We want a quantum code, for which even high
energy states have low-expansion.
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Locally-testable codes

® (lassical code C, with an extra property:
® there exists a local tester T.

® Given any word w, reads out O(1) position from w
® Accepts/rejects w.p. porportional to dist(w,C).
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Locally-testable codes

® (lassical code C, with an extra property:
® there exists a local tester T.

® Given any word w, reads out O(1) position from w
® Accepts/rejects w.p. porportional to dist(w,C).

® Check-out most updated survey by Goldreich.

® Tightly-connected to classical PCP.
® Appears in almost all known PCP constructions.

® Actual PCP theorems encode solution space into an
LTC!
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Hadamard code

Encoded space - any word of length n.

Encode by writing all inner-products <w,x> for all x
in {0,1}".

Rate is log(n).

It is locally testable [BLR] !
® Sample x,y at random
® Accept if and only if c(x) + c(y) = c(x+y).
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Do LTCs enforce low expansion?

We want: LTCs to enforce low expansion for
distributions with “low-energy”.

Consider the uniform distribution on codewords of
an LTC.

Suppose you add words that violate only few
checks.
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Do LTCs enforce low expansion?

We want: LTCs to enforce low expansion for
distributions with “low-energy”.

Consider the uniform distribution on codewords of
an LTC.

Suppose you add words that violate only few
checks.

How does it look like ?
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Is there a quantum analog?

® gLTC conjecture [AE"14]: quantum codes, with local
check check matrix H, such that

* We show:
® gLTC with linear distance is NLTS
® Therefore, the qLTC conjecture is stronger !
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Is there a quantum analog?

® gLTC conjecture [AE"14]: quantum codes, with local
check check matrix H, such that

e We show:

® gLTC with linear distance is NLTS
® Therefore, the qLTC conjecture is stronger !

® Alas - Our construction is NOT a qLTC!
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The hypergraph product code
[ Tillich-Zémor “09]

Consider a classical parity-check code C
® Parameterized by a bi-partite graph G(A,B).

Generate two new linear codes:

e Bitsare AxA, BxB
® Checksare Ax B, B x A.

Induces a quantum CSS code.

Checks are commuting !

Locality is the same as the maximal degree of G.
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'Hyper-graph product of the
Hadamard code

It is not a qLTC.
It has a “residual” property of local testability.

A subset of the logical operators contains numerous
copies of the original LTC.

Any quantum state is a “CAT"” state w.r.t. at least
one such operator.
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Hyper-graph product of the
Hadamard code

It is not a qLTC.
It has a “residual” property of local testability.

A subset of the logical operators contains numerous
copies of the original LTC.

Any quantum state is a “CAT” state w.r.t. at least
one such operator.

Measuring this state causes the string to cluster
around this super-position.
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® Live “footage” from F,"
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® Live “footage” from F,"
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Fix a low-energy quantum state.

It super-poses nontrivially on some (specially-
chosen) affine spaces of the logical space.

These spaces belong to a (classical) LTC
Any other string clusters around them.
Distribution is low-expansion

So it is hard for bounded-depth circuits.
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% ReSults

There are Hamiltonians with no low-energy trivial
states.

Local Hamiltonians don’t have a problem with

“rejecting” classical states even at high temperature.

They need to have an expanding topology.

Expansion per-se is not enough !

You need an extra structure. Whatis it ?
® Local testability !

Page 31/34




- - — — - -_— - ———
0 AN g e Ot Ba s 9T¢ G 410 P e b - A W alRaris vl dit =rhths - ey B ? ST N Ly ¥ Frgae Tt s e L et > i ;3
SIRT, 1 T S AN R AL R ety AT Rt i v SR L 2 MO e TS P Lo 4} /|
oV conb UL TN L AR b G IR d e B (PRI s S S et L LTS g UGS S LTS Y o A I LR "y
» * Frog alh 4B va ¢4 e L LT . ¥ .l " - i " o 'I e - .

Future directions

® Try to find such NLTS Hamiltonians that actually do
something useful.

® [f you can make it QMA-hard - it’s the qPCP
conjecture.
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Future directions

Try to find such NLTS Hamiltonians that actually do
something useful.

If you can make it QMA-hard - it’s the qPPCP
conjecture.

Try to find qLTCs - even with moderate locality.
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Future directions

Try to find such NLTS Hamiltonians that actually do
something useful.

If you can make it QMA-hard - it’s the qPPCP
conjecture.

Try to find qLTCs - even with moderate locality.

Compromise on locality of qLTC, but not on the
quality of the tester !
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