Title: All rigid N=2 supersymmetric backgrounds and actions

Date: Sep 25, 2015 11:00 AM

URL: http://pirsa.org/15090089

Abstract: $\langle p \rangle I$ will discuss how to classify (up to discrete identifications) all rigid 4D N=2 supersymmetric backgrounds in both Lorentzian and Euclidean signatures that preserve eight real supercharges. These include backgrounds such as warped S_3×R, warped AdS_3×R, and AdS_2×S^2, as well as some more exotic geometries. I will also address how to construct all supersymmetric two-derivative actions involving hypermultiplets and vector multiplets in these backgrounds. $\langle p \rangle$

Pirsa: 15090089 Page 1/59

All rigid ${\cal N}=2$ supersymmetric backgrounds and actions

Daniel Butter

Nikhef Theory Group, Amsterdam

September 25, 2015 Perimeter Institute, Waterloo

Based on [1505.03500] with Gianluca Inverso and Ivano Lodato

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

1 / 28

Pirsa: 15090089 Page 2/59

Motivation: Rigid SUSY on curved manifolds

Lots of work about exploiting SUSY on curved manifolds

ullet Wilson loop observables in N=4 on S^4

[Pestun '07]

ullet Partition functions of N=2 theories on S^3 to test various dualities

[Kapustin, Willett, Yaakov '10]

Computation of various indices for supersymmetric theories, etc.
 [Romelsberger '07] see also [Jafferis; Hama, Hosomichi, Lee; Imamura, Yokoyama; · · ·]

But how does one put a known supersymmetric field theory on a curved manifold in the first place?

[Festuccia and Seiberg] gave a systematic scheme...

Derive rigid SUSY from SUGRA.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

2 / 28

Pirsa: 15090089 Page 3/59

Motivation: Rigid SUSY on curved manifolds

Characterizing rigid manifolds with some SUSY

- ullet 4D N=1 theories with one or more supercharges and applications
 - Classification of possible Euclidean theories [Dumitrescu, Festuccia, Seiberg '12]
 - Lorentzian theories (and holography)

[Cassani, Klare, Martelli, Tomasiello, Zaffaroni '12]

Not a lot of work on 4D N=2

- ullet N=2 theories have interesting features and more SUSY to exploit...
- Classification of backgrounds with one supercharge: ∃ CKV

[Gupta, Murthy; Klare, Zaffaroni '13]

We will address the following questions:

What are all curved backgrounds consistent with full rigid N=2 SUSY? What are all rigid actions for vector multiplets and hypermultiplets?

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

3 / 28

Pirsa: 15090089 Page 4/59

Motivation: Rigid SUSY on curved manifolds

Characterizing rigid manifolds with some SUSY

- ullet 4D N=1 theories with one or more supercharges and applications
 - Classification of possible Euclidean theories [Dumitrescu, Festuccia, Seiberg '12]
 - Lorentzian theories (and holography)

[Cassani, Klare, Martelli, Tomasiello, Zaffaroni '12]

Not a lot of work on 4D N=2

- ullet N=2 theories have interesting features and more SUSY to exploit...
- Classification of backgrounds with one supercharge: ∃ CKV

[Gupta, Murthy; Klare, Zaffaroni '13]

We will address the following questions:

What are all curved backgrounds consistent with *full* rigid N=2 SUSY? What are all rigid actions for vector multiplets and hypermultiplets?

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

3 / 28

Pirsa: 15090089 Page 5/59

Take a pause and recall the lesson of [Festuccia-Seiberg '11]:

A rigid SUSY matter action can be thought of as a coupled matter-SUGRA action with SUGRA fixed as background... and the auxiliary fields are important.

Finding a rigid SUSY means solving the SUGRA Killing spinor equation.

$$\delta \psi_m = 2 \mathcal{D}_m \xi(x) + \text{auxiliary fields} = 0$$

Generically, $\xi(x) = A(x)\epsilon$ in terms of constants ϵ .

for $S^{\prime\prime}$, AdS_n , $H^{\prime\prime}$ see [Lü, Pope, Rahmfeld '98

Two observations:

- Number of solutions $\epsilon =$ number of rigid supercharges \implies Requring more supercharges gives stronger conditions.
- Choice of N (and off-shell sugra) determines the form of the equation.

 Increasing N gives weaker conditions b/c more auxiliary fields.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

6 / 28

Pirsa: 15090089 Page 6/59

Take a pause and recall the lesson of [Festuccia-Seiberg '11]:

A rigid SUSY matter action can be thought of as a coupled matter-SUGRA action with SUGRA fixed as background... and the auxiliary fields are important.

Finding a rigid SUSY means solving the SUGRA Killing spinor equation.

$$\delta \psi_m = 2 \mathcal{D}_m \xi(x) + \text{auxiliary fields} = 0$$

Generically, $\xi(x) = A(x)\epsilon$ in terms of constants ϵ .

for S^n , AdS_n , H^n see [Lü, Pope, Rahmfeld '98]

Two observations

- Number of solutions $\epsilon =$ number of rigid supercharges \implies Requring more supercharges gives stronger conditions.
- Choice of N (and off-shell sugra) determines the form of the equation. \implies Increasing N gives weaker conditions b/c more auxiliary fields.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

6 / 28

Pirsa: 15090089 Page 7/59

Take a pause and recall the lesson of [Festuccia-Seiberg '11]:

A rigid SUSY matter action can be thought of as a coupled matter-SUGRA action with SUGRA fixed as background... and the auxiliary fields are important.

Finding a rigid SUSY means solving the SUGRA Killing spinor equation.

$$\delta \psi_m = 2 \mathcal{D}_m \xi(x) + \text{auxiliary fields} = 0$$

Generically, $\xi(x) = A(x)\epsilon$ in terms of constants ϵ .

for S^n , AdS_n , H^n see [Lü, Pope, Rahmfeld '98]

Two observations:

- Number of solutions $\epsilon =$ number of rigid supercharges \implies Requring more supercharges gives stronger conditions.
- Choice of N (and off-shell sugra) determines the form of the equation. \implies Increasing N gives weaker conditions b/c more auxiliary fields.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

6 / 28

Pirsa: 15090089

Take a pause and recall the lesson of [Festuccia-Seiberg '11]:

A rigid SUSY matter action can be thought of as a coupled matter-SUGRA action with SUGRA fixed as background... and the auxiliary fields are important.

Finding a rigid SUSY means solving the SUGRA Killing spinor equation.

$$\delta\psi_m=2\mathcal{D}_m\xi(x)+\text{auxiliary fields}=0$$

Generically, $\xi(x) = A(x)\epsilon$ in terms of constants ϵ .

for S^n , AdS_n , H^n see [Lü, Pope, Rahmfeld '98]

Two observations:

- Number of solutions $\epsilon =$ number of rigid supercharges \implies Requring more supercharges gives stronger conditions.
- Choice of N (and off-shell sugra) determines the form of the equation. \implies Increasing N gives weaker conditions b/c more auxiliary fields.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Take a pause and recall the lesson of [Festuccia-Seiberg '11]:

A rigid SUSY matter action can be thought of as a coupled matter-SUGRA action with SUGRA fixed as background... and the auxiliary fields are important.

Finding a rigid SUSY means solving the SUGRA Killing spinor equation.

$$\delta\psi_m=2\mathcal{D}_m\xi(x)+{\sf auxiliary\ fields}=0$$

Generically, $\xi(x) = A(x)\epsilon$ in terms of constants ϵ .

for S^n , AdS_n , H^n see [Lü, Pope, Rahmfeld '98]

Two observations:

- Number of solutions $\epsilon =$ number of rigid supercharges \implies Requring more supercharges gives stronger conditions.
- Choice of N (and off-shell sugra) determines the form of the equation. \implies Increasing N gives weaker conditions b/c more auxiliary fields.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Take a pause and recall the lesson of [Festuccia-Seiberg '11]:

A rigid SUSY matter action can be thought of as a coupled matter-SUGRA action with SUGRA fixed as background... and the auxiliary fields are important.

Finding a rigid SUSY means solving the SUGRA Killing spinor equation.

$$\delta\psi_m=2\mathcal{D}_m\xi(x)+\text{auxiliary fields}=0$$

Generically, $\xi(x) = A(x)\epsilon$ in terms of constants ϵ .

for S^n , AdS_n , H^n see [Lü, Pope, Rahmfeld '98]

Two observations:

- Number of solutions $\epsilon =$ number of rigid supercharges \implies Requring more supercharges gives stronger conditions.
- Choice of N (and off-shell sugra) determines the form of the equation. \implies Increasing N gives weaker conditions b/c more auxiliary fields.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Example: Different off-shell $N\!=\!1$ SUGRAs lead to different backgrounds.

ullet Old minimal SUGRA: auxiliaries G_a and M

$$D_m \xi_\alpha + iG^b (\eta_{ab} + \sigma_{ab})_\alpha^{\beta} \xi_\beta + iM (\sigma_m \bar{\xi})_\alpha = 0$$

- ullet Four (Euclidean) supercharges: $\mathbb{R} imes S^3$, $\mathbb{R} imes H^3$, S^4 , or H^4
- ullet New minimal SUGRA: $U(1)_R$ gauge field A_m and two-form auxiliary B_{mn}

$$D_m^{(A)} \xi_\alpha + i \tilde{H}^b (\eta_{ab} + \sigma_{ab})_\alpha^{\beta} \xi_\beta = 0$$

ullet Four (Euclidean) supercharges: $\mathbb{R} imes S^3$ or $\mathbb{R} imes H^3$

We should use the most general auxiliaries for N=2.

What is the most general off-shell N=2 SUGRA?

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Conformal SUGRA: 24b+24f

 $e_m{}^a$

 $\psi_{m\alpha}{}^{i}$ $V_{m}{}^{i}{}_{j}$ V_{m}

 W_{ab}^-

 $\chi_{\alpha i}$

D

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Conformal SUGRA: 24b+24f

 $e_m{}^a$

 $\psi_{m\alpha}{}^{i}$ $V_{m}{}^{i}{}_{j}$ V_{m}

 W_{ab}^-

 $\chi_{\alpha i}$

D

$$\epsilon_m^{-a}$$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Conformal SUGRA: 24b+24f

 $e_m{}^a$

 $\psi_{m\alpha}{}^{i}$ $V_{m}{}^{i}{}_{j}$ V_{m} W_{ab}^{-}

 $\chi_{\alpha i}$

Use the longest possible compensator

General scalar multiplet: 128b + 128f

 Ω

 $Y_{ab}^ S^{ij}$

 $G_a = G_a^i_j$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Conformal SUGRA: 24b+24f

 $e_m{}^a$

 $\psi_{m\alpha}{}^{i}$ $V_{m}{}^{i}{}_{j}$ V_{m} W_{ab}^{-}

 $\chi_{\alpha i}$

Use the longest possible compensator

General scalar multiplet: 128b + 128f

 Ω

 $Y_{ab}^ S^{ij}$

 $G_a = G_a^i_j$

Daniel Butter (Nikhef)

Rigid $N\,=\,2$ SUSY backgrounds and actions

General SUGRA Killing spinor equation:

$$0 = \delta_{\mathsf{Q}} \psi_{m\alpha}{}^{i} = 2\mathcal{D}_{m} \xi_{\alpha i} - i \bar{S}_{ij} (\sigma_{m} \bar{\xi}^{j})_{\alpha} + i \bar{\mathcal{Z}}_{mn} (\sigma^{n} \bar{\xi}_{i})_{\alpha} + 4i G^{n} (\sigma_{nm} \xi_{i})_{\alpha} - 2G^{nj}{}_{i} (\sigma_{n} \bar{\sigma}_{m} \xi_{j})_{\alpha}$$

Helpful to express this in superspace...

Howe [82]

General SUGRA algebra (schematic form)

 $\{{\cal D}_{lpha}{}',{\cal D}_{eta{}'}\}={\sf Lorentz}$ and R-symmetry curvatures .

 $\{{\cal D}_{lpha}{}^i,{ar {\cal D}_{eta}}_j\}=-2i\,\delta_j^i{\cal D}_{lphaeta}^-+$ Lorentz and R-symmetry curvatures

curvatures involve: S^{ij} . \mathcal{Z}_{ab} . G_a . $G_a{}^{ij} = e^{jk}G_a{}^{i}{}_k$

A rigid SUSY must leave the curvatures invariant.

$$\mathcal{S}_{\sigma}S^{\prime\prime} = \mathcal{S}_{\sigma}^{\prime}\mathcal{D}_{\sigma}^{\prime}S^{\prime\prime} = 0 \qquad \Longrightarrow \qquad \{\mathcal{D}_{\sigma}^{\prime},\mathcal{D}_{\sigma}^{\prime}\}S^{\prime\prime} = 0$$

Integrability conditions imply that all curvatures are (covariantly) constant.

[Kuzenko '12: + Novak, Tartaglino-Mazzucchelli '14

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

0 / 29

Pirsa: 15090089 Page 17/59

General SUGRA Killing spinor equation:

$$0 = \delta_{\mathsf{Q}} \psi_{m\alpha}{}^{i} = 2\mathcal{D}_{m} \xi_{\alpha i} - i \bar{S}_{ij} (\sigma_{m} \bar{\xi}^{j})_{\alpha} + i \bar{\mathcal{Z}}_{mn} (\sigma^{n} \bar{\xi}_{i})_{\alpha} + 4i G^{n} (\sigma_{nm} \xi_{i})_{\alpha} - 2G^{nj}{}_{i} (\sigma_{n} \bar{\sigma}_{m} \xi_{j})_{\alpha}$$

Helpful to express this in superspace...

[Howe '82]

General SUGRA algebra (schematic form)

 $\{\mathcal{D}_{\alpha}{}^{i},\mathcal{D}_{\beta}{}^{j}\}=$ Lorentz and R-symmetry curvatures ,

 $\{\mathcal{D}_{\alpha}{}^i,\bar{\mathcal{D}}_{\dot{\beta}j}\}=-2i\,\delta^i_j\mathcal{D}_{\alpha\dot{\beta}}+\text{Lorentz and }R\text{-symmetry curvatures}$

curvatures involve: S^{ij} , \mathcal{Z}_{ab} , G_a , $G_a{}^{ij} = \epsilon^{jk} G_a{}^i{}_k$

A rigid SUSY must leave the curvatures invariant.

$$\delta_{\mathbf{Q}}S^{ij} = \xi_k^{\alpha} \mathcal{D}_{\alpha}^k S^{ij} = 0 \quad \Longrightarrow \quad \mathcal{D}_{\alpha}^k S^{ij} = 0 \quad \Longrightarrow \quad \{\mathcal{D}_{\alpha}^k, \mathcal{D}_{\beta}^l\} S^{ij} = 0$$

Integrability conditions imply that all curvatures are (covariantly) constant.

[Kuzenko '12; + Novak, Tartaglino-Mazzucchelli '14]

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

General SUGRA Killing spinor equation:

$$0 = \delta_{\mathsf{Q}} \psi_{m\alpha}{}^{i} = 2\mathcal{D}_{m} \xi_{\alpha i} - i \bar{S}_{ij} (\sigma_{m} \bar{\xi}^{j})_{\alpha} + i \bar{\mathcal{Z}}_{mn} (\sigma^{n} \bar{\xi}_{i})_{\alpha} + 4i G^{n} (\sigma_{nm} \xi_{i})_{\alpha} - 2G^{nj}{}_{i} (\sigma_{n} \bar{\sigma}_{m} \xi_{j})_{\alpha}$$

Helpful to express this in superspace...

[Howe '82]

General SUGRA algebra (schematic form)

 $\{\mathcal{D}_{\alpha}{}^{i},\mathcal{D}_{\beta}{}^{j}\}=$ Lorentz and R-symmetry curvatures ,

 $\{\mathcal{D}_{\alpha}{}^{i},\bar{\mathcal{D}}_{\dot{\beta}j}\}=-2i\,\delta^{i}_{j}\mathcal{D}_{\alpha\dot{\beta}}+\text{Lorentz and }R\text{-symmetry curvatures}$

curvatures involve: S^{ij} , \mathcal{Z}_{ab} , G_a , $G_a^{ij} = \epsilon^{jk} G_a^{i}$

A rigid SUSY must leave the curvatures invariant.

$$\delta_{\mathbf{Q}}S^{ij} = \xi_k^{\alpha} \mathcal{D}_{\alpha}^k S^{ij} = 0 \quad \Longrightarrow \quad \mathcal{D}_{\alpha}^k S^{ij} = 0 \quad \Longrightarrow \quad \{\mathcal{D}_{\alpha}^k, \mathcal{D}_{\beta}^l\} S^{ij} = 0$$

Integrability conditions imply that all curvatures are (covariantly) constant.

[Kuzenko '12; + Novak, Tartaglino-Mazzucchelli '14]

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

General SUGRA Killing spinor equation:

$$0 = \delta_{\mathsf{Q}} \psi_{m\alpha}{}^{i} = 2\mathcal{D}_{m} \xi_{\alpha i} - i \bar{S}_{ij} (\sigma_{m} \bar{\xi}^{j})_{\alpha} + i \bar{\mathcal{Z}}_{mn} (\sigma^{n} \bar{\xi}_{i})_{\alpha} + 4i G^{n} (\sigma_{nm} \xi_{i})_{\alpha} - 2G^{nj}{}_{i} (\sigma_{n} \bar{\sigma}_{m} \xi_{j})_{\alpha}$$

Helpful to express this in superspace...

[Howe '82]

General SUGRA algebra (schematic form)

 $\{\mathcal{D}_{\alpha}{}^{i},\mathcal{D}_{\beta}{}^{j}\}=$ Lorentz and R-symmetry curvatures ,

 $\{\mathcal{D}_{\alpha}{}^{i},\bar{\mathcal{D}}_{\dot{\beta}j}\}=-2i\,\delta^{i}_{j}\mathcal{D}_{\alpha\dot{\beta}}+\text{Lorentz and }R\text{-symmetry curvatures}$

curvatures involve: S^{ij} , \mathcal{Z}_{ab} , G_a , $G_a{}^{ij} = \epsilon^{jk} G_a{}^i{}_k$

A rigid SUSY must leave the curvatures invariant.

$$\delta_{\mathbf{Q}}S^{ij} = \xi_k^{\alpha} \mathcal{D}_{\alpha}^k S^{ij} = 0 \quad \Longrightarrow \quad \mathcal{D}_{\alpha}^k S^{ij} = 0 \quad \Longrightarrow \quad \{\mathcal{D}_{\alpha}^k, \mathcal{D}_{\beta}^l\} S^{ij} = 0$$

Integrability conditions imply that all curvatures are (covariantly) constant.

[Kuzenko '12; + Novak, Tartaglino-Mazzucchelli '14]

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

From constant curvatures to coset spaces

Riemann tensor is explicitly determined

$$R_{ab}{}^{cd} = S^{ij} \bar{S}_{ij} \delta_a{}^{[c} \delta_b{}^{d]} - \frac{1}{2} (\mathcal{Z}_{ab} \bar{\mathcal{Z}}^{cd} + \bar{\mathcal{Z}}_{ab} \mathcal{Z}^{cd})$$
$$+ 8 G^2 \delta_a{}^{[c} \delta_b{}^{d]} - 16 G_{[a} G^{[c} \delta_{b]}{}^{d]} + 4 G_{ij}^f G_f^{ij} \delta_a{}^{[c} \delta_b{}^{d]} - 8 G_{[a}^{ij} G_{ij}^{[c} \delta_{b]}{}^{d]}$$

Although all curvature tensors specified, we really want to know:

- What is the (global) structure of these spaces?
- How do we know the full set of Killing spinors actually exists?

We can easily resolve all these issues if we realize one important fact:

constant curvature tensors \Longrightarrow (super) coset space

More accurately: for any superspace algebra with constant curvatures, we can construct a (global) super coset space with the same curvatures.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

From constant curvatures to coset spaces

Riemann tensor is explicitly determined

$$R_{ab}{}^{cd} = S^{ij} \bar{S}_{ij} \delta_a{}^{[c} \delta_b{}^{d]} - \frac{1}{2} (\mathcal{Z}_{ab} \bar{\mathcal{Z}}^{cd} + \bar{\mathcal{Z}}_{ab} \mathcal{Z}^{cd})$$
$$+ 8 G^2 \delta_a{}^{[c} \delta_b{}^{d]} - 16 G_{[a} G^{[c} \delta_{b]}{}^{d]} + 4 G_{ij}^f G_f^{ij} \delta_a{}^{[c} \delta_b{}^{d]} - 8 G_{[a}^{ij} G_{ij}^{[c} \delta_{b]}{}^{d]}$$

Although all curvature tensors specified, we really want to know:

- What is the (global) structure of these spaces?
- How do we know the full set of Killing spinors actually exists?

We can easily resolve all these issues if we realize one important fact:

constant curvature tensors \implies (super) coset space

More accurately: for any superspace algebra with constant curvatures, we can construct a (global) super coset space with the same curvatures.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

From constant curvatures to coset spaces

Riemann tensor is explicitly determined

$$R_{ab}{}^{cd} = S^{ij} \bar{S}_{ij} \delta_a{}^{[c} \delta_b{}^{d]} - \frac{1}{2} (\mathcal{Z}_{ab} \bar{\mathcal{Z}}^{cd} + \bar{\mathcal{Z}}_{ab} \mathcal{Z}^{cd})$$
$$+ 8 G^2 \delta_a{}^{[c} \delta_b{}^{d]} - 16 G_{[a} G^{[c} \delta_{b]}{}^{d]} + 4 G_{ij}^f G_f^{ij} \delta_a{}^{[c} \delta_b{}^{d]} - 8 G_{[a}^{ij} G_{ij}^{[c} \delta_{b]}{}^{d]}$$

Although all curvature tensors specified, we really want to know:

- What is the (global) structure of these spaces?
- How do we know the full set of Killing spinors actually exists?

We can easily resolve all these issues if we realize one important fact:

constant curvature tensors \implies (super) coset space

More accurately: for any superspace algebra with constant curvatures, we can construct a (global) super coset space with the same curvatures.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Review: Coset spaces

Consider a Lie group G with a subgroup H.

The coset space G/H is the space of equivalences $g\cong gh$ for $g\in G$ and $h\in H.$ Take Lie algebras $\mathfrak g$ and $\mathfrak h$ and assume $\mathfrak g=\mathfrak K\oplus\mathfrak h$ where

$$[\mathfrak{h},\mathfrak{h}]=\mathfrak{h}$$
, $[\mathfrak{h},\mathfrak{K}]=\mathfrak{K}$, $[\mathfrak{K},\mathfrak{K}]=\mathfrak{K}+\mathfrak{h}$

Schematically, G/H is generated by \mathfrak{K} .

More constructively...

- ullet Denote $\mathfrak{K}=\{\hat{P}_a\}$ and $\mathfrak{h}=\{\hat{M}_{ab}\}.$
- ullet Introduce representative coset element: $L(x) = \exp(x^a \hat{P}_a)$.
- Action of G on the coset space G/H can always be written

$$gL(x) = L(x') h(g,x) \cong L(x')$$
 $\forall g \in G$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Review: Coset spaces

Consider a Lie group G with a subgroup H.

The coset space G/H is the space of equivalences $g\cong gh$ for $g\in G$ and $h\in H$. Take Lie algebras $\mathfrak g$ and $\mathfrak h$ and assume $\mathfrak g=\mathfrak K\oplus\mathfrak h$ where

$$[\mathfrak{h},\mathfrak{h}]=\mathfrak{h}$$
, $[\mathfrak{h},\mathfrak{K}]=\mathfrak{K}$, $[\mathfrak{K},\mathfrak{K}]=\mathfrak{K}+\mathfrak{h}$

Schematically, G/H is generated by \mathfrak{K} .

More constructively...

- ullet Denote $\mathfrak{K}=\{\hat{P}_a\}$ and $\mathfrak{h}=\{\hat{M}_{ab}\}.$
- Introduce representative coset element: $L(x) = \exp(x^a \hat{P}_a)$.
- ullet Action of G on the coset space G/H can always be written

$$gL(x) = L(x') h(g, x) \cong L(x') \quad \forall g \in G$$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Review: Local coset space geometry

Local geometry is encoded in the coset representative $L(x) = \exp(x^a \hat{P}_a)$.

Construct Cartan-Maurer form

$$L^{-1}dL = dx^m \left(e_m{}^a(x)\hat{P}_a + \frac{1}{2}\omega_m{}^{ab}(x)\hat{M}_{ab} \right)$$

2. Covariant derivs $\mathcal{D}_a = e_a{}^m (\partial_m - \frac{1}{2} \omega_m{}^{ab} M_{ab})$ inherit algebra.

$$[\hat{P}_{a}, \hat{P}_{b}] = -f_{ab}{}^{c}\hat{P}_{c} - \frac{1}{2}f_{ab}{}^{cd}\hat{M}_{cd} ,$$

$$[\mathcal{D}_{a}, \mathcal{D}_{b}] = -T_{ab}{}^{c}\mathcal{D}_{c} - \frac{1}{2}R_{ab}{}^{cd}M_{cd} , \qquad T_{ab}{}^{c} = f_{ab}{}^{c} , \quad R_{ab}{}^{cd} = f_{ab}{}^{cd} .$$

3. Local isometries are the Killing vectors $\xi^a(x)$ that obey $\mathcal{D}_{(a}\xi_{b)}=0$. But they are also encoded algebraically

$$L^{-1}(\epsilon^a \hat{P}_a + \frac{1}{2}\lambda^{ab}\hat{M}_{ab})L = \xi^a(x)\hat{P}_a + \frac{1}{2}\xi^{ab}(x)\hat{M}_{ab}$$

Schematically, $\xi^a(x) = A(x)^a{}_b\,\epsilon^b + B(x)^a{}_{bc}\,\lambda^{bc}$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Supercoset spaces

Same approach holds for supercoset spaces.

- Choose a supercoset representative: $L = \exp(x^a \hat{P}_a + \theta_i \hat{Q}^i + \bar{\theta}^i \hat{\bar{Q}}_i)$.
- Killing spinors are trivial to calculate

(only
$$\theta = 0$$
 part is needed)

$$L^{-1}(\epsilon^i \hat{Q}_i + \bar{\epsilon}_i \hat{\bar{Q}}^i)L = \xi^i(x)\hat{Q}_i + \bar{\xi}_i(x)\hat{\bar{Q}}^i$$

Schematically,
$$\begin{pmatrix} \xi^i \\ \bar{\xi}_i \end{pmatrix} = A(x) \begin{pmatrix} \epsilon^i \\ \bar{\epsilon}_i \end{pmatrix}$$

see e.g. [Alonso-Alberca, Lozano-Tellechea, Ortin '02]

This gives algebraic procedure for constructing the Killing spinors.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Supercoset spaces

Same approach holds for supercoset spaces.

- Choose a supercoset representative: $L = \exp(x^a \hat{P}_a + \theta_i \hat{Q}^i + \bar{\theta}^i \hat{\bar{Q}}_i)$.
- Killing spinors are trivial to calculate

(only
$$\theta = 0$$
 part is needed)

$$L^{-1}(\epsilon^i \hat{Q}_i + \bar{\epsilon}_i \hat{\bar{Q}}^i)L = \xi^i(x)\hat{Q}_i + \bar{\xi}_i(x)\hat{\bar{Q}}^i$$

Schematically,
$$\begin{pmatrix} \xi^i \\ \bar{\xi}_i \end{pmatrix} = A(x) \begin{pmatrix} \epsilon^i \\ \bar{\epsilon}_i \end{pmatrix}$$

see e.g. [Alonso-Alberca, Lozano-Tellechea, Ortin '02]

This gives algebraic procedure for constructing the Killing spinors.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Background constant fields:

$$S^{ij}$$
, \mathcal{Z}_{ab} , G_a , $G_a^{i}_{j}$

- \mathcal{Z}_{ab} is a complex field strength, $d\mathcal{Z} = 0$. If the SUGRA algebra has (complex) central charge, \mathcal{Z}_{ab} is its field strength.
- ullet G_a may be thought of as dual of three-form field strength H_{abc} .

Three sets of solutions to integrability conditions for background fields:

- 1. S_{ij} alone is nonzero
- **2**. $G_a^{\otimes a}$ alone is nonzero and decomposes as $G_a^{\otimes a} = g_a v^{\otimes a}$
- **3.** G_n and/or \mathcal{Z}_{nh} are nonzero and obey $G^*\mathcal{Z}_{nh}=0$

Background fields determine R-symmetries in two ways:

- Their VEVs break some of the R-symmetry.
- ullet They generate R-symmetry within the SUSY algebra.

$$\{\mathcal{D}_{i,i}^{-1},\mathcal{D}_{i,i}^{-1}\}\sim e^{it}e_{i,i}\cdot S^{t,i}I_{i,i}+\left\{\mathcal{Z}_{i,i}^{-1}I_{i,i}^{-1}\right\}\left\{\left\{\mathcal{D}_{i,i}^{-1},\hat{\mathcal{D}}_{i,j}\right\}\right\}\sim G_{i,i}I_{i,j}^{+1}+G_{i,i}I_{i,j}^{+1}A_{i,j}$$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Background constant fields:

$$S^{ij}$$
, \mathcal{Z}_{ab} , G_a , $G_a^{i}_{j}$

- \mathcal{Z}_{ab} is a complex field strength, $d\mathcal{Z} = 0$. If the SUGRA algebra has (complex) central charge, \mathcal{Z}_{ab} is its field strength.
- \bullet G_a may be thought of as dual of three-form field strength H_{abc} .

Three sets of solutions to integrability conditions for background fields:

- 1. S_{ij} alone is nonzero
- 2. $G_a{}^{\cup}$ alone is nonzero and decomposes as $G_a{}^{\cup}=g_av{}^{\cup}$
- **3.** G_n and for \mathcal{Z}_{ab} are nonzero and obey $G^*\mathcal{Z}_{ab}=0$

Background fields determine $\it R$ -symmetries in two ways:

- Their VEVs break some of the R-symmetry.
- ullet They generate R-symmetry within the SUSY algebra.

$$\{[\mathcal{D}_{i,i}],\mathcal{D}_{i,j}\}\sim e^{ij}e_{i,j}\cdot S^{ki}I_{ki}+[[\mathcal{Z}_{i,j}]I^{ki}],\quad \{[\mathcal{D}_{i,j}],\mathcal{D}_{i,j}\}\sim G_{i,j}I^{k}_{i,j}+G_{i,j}I^{k}_{i,j}$$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Background constant fields:

$$S^{ij}$$
, \mathcal{Z}_{ab} , G_a , $G_a^{i}_{j}$

- \mathcal{Z}_{ab} is a complex field strength, $d\mathcal{Z} = 0$. If the SUGRA algebra has (complex) central charge, \mathcal{Z}_{ab} is its field strength.
- \bullet G_a may be thought of as dual of three-form field strength H_{abc} .

Three sets of solutions to integrability conditions for background fields:

- 1. S_{ij} alone is nonzero
- 2. $G_a{}^{ij}$ alone is nonzero and decomposes as $G_a{}^{ij} = g_a v^{ij}$
- 3. G_a and/or \mathcal{Z}_{ab} are nonzero and obey $G^a\mathcal{Z}_{ab}=0$

Background fields determine R-symmetries in two ways:

- Their VEVs break some of the R-symmetry
- They generate R-symmetry within the SUSY algebra.

 $\{[\mathcal{D}_{i,i}], [\mathcal{D}_{i,i}]\} \sim e^{i T} e_{i,i} \cdot S^{k_i} I_{k_i} + [\mathcal{Z}_{i,i}, I^{k_i}], \quad \{[\mathcal{D}_{i,i}], [\mathcal{D}_{i,i}]\} \sim G_{i,i}[I]_i + G_{i,i}[I]_i A_i$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Background constant fields:

$$S^{ij}$$
, \mathcal{Z}_{ab} , G_a , $G_a^{i}_{j}$

- \mathcal{Z}_{ab} is a complex field strength, $d\mathcal{Z} = 0$. If the SUGRA algebra has (complex) central charge, \mathcal{Z}_{ab} is its field strength.
- ullet G_a may be thought of as dual of three-form field strength H_{abc} .

Three sets of solutions to integrability conditions for background fields:

- 1. S_{ij} alone is nonzero
- 2. $G_a{}^{ij}$ alone is nonzero and decomposes as $G_a{}^{ij} = g_a v^{ij}$
- 3. G_a and/or \mathcal{Z}_{ab} are nonzero and obey $G^a\mathcal{Z}_{ab}=0$

Background fields determine R-symmetries in two ways:

- Their VEVs break some of the R-symmetry.
- They generate R-symmetry within the SUSY algebra.

$$\{\mathcal{D}_{\alpha}{}^{i}, \mathcal{D}_{\beta}{}^{j}\} \sim \epsilon^{ij} \epsilon_{\alpha\beta} S^{kl} I_{kl} + \mathcal{Z}_{\alpha\beta} I^{ij}, \quad \{\mathcal{D}_{\alpha}{}^{i}, \bar{\mathcal{D}}_{\dot{\beta}j}\} \sim G_{\alpha\dot{\beta}} I^{i}{}_{j} + G_{\alpha\dot{\beta}}{}^{i}{}_{j}\mathbb{A}$$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Background constant fields:

$$S^{ij}$$
, \mathcal{Z}_{ab} , G_a , $G_a^{i}_{j}$

- \mathcal{Z}_{ab} is a complex field strength, $d\mathcal{Z} = 0$. If the SUGRA algebra has (complex) central charge, \mathcal{Z}_{ab} is its field strength.
- \bullet G_a may be thought of as dual of three-form field strength H_{abc} .

Three sets of solutions to integrability conditions for background fields:

- 1. S_{ij} alone is nonzero
- 2. $G_a{}^{ij}$ alone is nonzero and decomposes as $G_a{}^{ij} = g_a v^{ij}$
- 3. G_a and/or \mathcal{Z}_{ab} are nonzero and obey $G^a\mathcal{Z}_{ab}=0$

Background fields determine R-symmetries in two ways:

- Their VEVs break some of the R-symmetry.
- They generate R-symmetry within the SUSY algebra.

$$\{\mathcal{D}_{\alpha}{}^{i}, \mathcal{D}_{\beta}{}^{j}\} \sim \epsilon^{ij} \epsilon_{\alpha\beta} S^{kl} I_{kl} + \mathcal{Z}_{\alpha\beta} I^{ij}, \quad \{\mathcal{D}_{\alpha}{}^{i}, \bar{\mathcal{D}}_{\dot{\beta}j}\} \sim G_{\alpha\dot{\beta}} I^{i}{}_{j} + G_{\alpha\dot{\beta}}{}^{i}{}_{j}\mathbb{A}$$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Background constant fields:

$$S^{ij}$$
, \mathcal{Z}_{ab} , G_a , $G_a^{i}_{j}$

- \mathcal{Z}_{ab} is a complex field strength, $d\mathcal{Z} = 0$. If the SUGRA algebra has (complex) central charge, \mathcal{Z}_{ab} is its field strength.
- \bullet G_a may be thought of as dual of three-form field strength H_{abc} .

Three sets of solutions to integrability conditions for background fields:

- 1. S_{ij} alone is nonzero
- 2. $G_a^{\ ij}$ alone is nonzero and decomposes as $G_a^{\ ij}=g_av^{ij}$
- 3. G_a and/or \mathcal{Z}_{ab} are nonzero and obey $G^a\mathcal{Z}_{ab}=0$

Background fields determine R-symmetries in two ways:

- Their VEVs break some of the R-symmetry.
- They generate R-symmetry within the SUSY algebra.

$$\{\mathcal{D}_{\alpha}{}^{i}, \mathcal{D}_{\beta}{}^{j}\} \sim \epsilon^{ij} \epsilon_{\alpha\beta} S^{kl} I_{kl} + \mathcal{Z}_{\alpha\beta} I^{ij}, \quad \{\mathcal{D}_{\alpha}{}^{i}, \bar{\mathcal{D}}_{\dot{\beta}j}\} \sim G_{\alpha\dot{\beta}} I^{i}{}_{j} + G_{\alpha\dot{\beta}}{}^{i}{}_{j}\mathbb{A}$$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Menagerie of ${\cal N}=2$ backgrounds: The simplest cases

Start with the simple Lorentzian cases...

Geometry	Active backgrounds	Supergroup
AdS_4	S^{ij}	OSp(2 1)
$\mathbb{R} \times S^3$	$G_{a^{\prime}_{eta}}$ timelike	$SU(2 1) \times SU(2 1)$
$AdS_3\times\mathbb{R}$		
plane wave	$G_{n^{\prime}_{N}}$ null	
$\mathbb{R} \times S^3$	G_{a} timelike	$SU(2 2) \times SU(2)$
$AdS_3 \times \mathbb{R}$		
plane wave		
$AdS_2 imes S^2$	\mathcal{Z}_{ab} elliptic - hyperbolic	$D(2,1;\alpha)$
$\mathbb{R}^{1,1} \times S^2$		
$AdS_2 \times \mathbb{R}^2$		
plane wave	\mathcal{Z}_{ab} parabolic ($\mathcal{Z}_{a}^{-2}=0$)	

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Menagerie of ${\cal N}=2$ backgrounds: The simplest cases

Start with the simple Lorentzian cases...

Geometry	Active backgrounds	Supergroup
AdS_4	S^{ij}	OSp(2 4)
$\mathbb{R} imes S^3$ AdS $_3 imes \mathbb{R}$ plane wave	$G_{a\ j}^{\ i}$ timelike $G_{a\ j}^{\ i}$ spacelike $G_{a\ j}^{\ i}$ null	$SU(2 1) \times SU(2 1)$ $SU(1,1 1) \times SU(1,1 1)$
$\mathbb{R} imes S^3$ $AdS_3 imes \mathbb{R}$ plane wave	G_a timelike G_a spacelike G_a null	$SU(2 2) \times SU(2)$ $SU(1,1 2) \times SU(1,1)$
$AdS_2 imes S^2$ $\mathbb{R}^{1,1} imes S^2$ $AdS_2 imes \mathbb{R}^2$ plane wave	\mathcal{Z}_{ab} elliptic - hyperbolic \mathcal{Z}_{ab} elliptic ($\mathcal{Z}^{-2}>0$) \mathcal{Z}_{ab} hyperbolic ($\mathcal{Z}^{-2}<0$) \mathcal{Z}_{ab} parabolic ($\mathcal{Z}^{-2}=0$)	$D(2, 1; \alpha)$ $D(2, 1; \infty) = SU(2 2)$ $D(2, 1; 0) = SU(1, 1 2)$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Pirsa: 15090089 Page 37/59

$AdS_2 \times S^2$ and $D(2,1;\alpha)$

Some historical observations

• A non-trivial spherically symmetric solution of N=2 gauged supergravity is $AdS_2 \times S^2$ of equal radii. The eight supercharges give SU(1,1|2).

This describes the near horizon geometry of an extremal BPS Reissner-Nordstrom black hole. (Related to attractor mechanism.)

[Ferrara, Kallosh, Strominger '95; Ferrara, Kallosh '96]

ullet Can be generalized to different radii supergeometries with supergroup D(2,1;lpha). (Not SUGRA solutions!) [Bandos, Ivanov, Lukierski, Sorokin '02]

 $D(2,1;\alpha)$ has bosonic part $SU(1,1)\times SU(2)\times SU(2)_R$ with $Q_{\tilde{a}\;\tilde{\alpha}\;i}\in (\mathbf{2},\mathbf{2},\mathbf{2})$

$$\{Q_{\bar{a}\,\bar{\alpha}\,i},\;Q_{\bar{b}\,\bar{\beta}\,j}\} = -\lambda_{-}\epsilon_{\bar{\alpha}\bar{\beta}}\epsilon_{ij}\underbrace{T_{\bar{a}\bar{b}}}_{AdS_{2}} -\lambda_{+}\epsilon_{\bar{a}\bar{b}}\epsilon_{ij}\underbrace{T_{\bar{\alpha}\bar{\beta}}}_{S^{2}} + (\lambda_{+} + \lambda_{-})\epsilon_{\bar{a}\bar{b}}\epsilon_{\bar{\alpha}\bar{\beta}}\underbrace{I_{ij}}_{SU(2)_{R}}$$

The Euclidean version has been studied recently with various applications.

[Bawane, Bonelli, Ronzani, Tanzini '14; Sinamuli '14; Rodriguez-Gomez and Schmude '15]

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Deforming these spaces: Squashing $\mathbb{R} \times S^3$

Squashing the S^3 is only possible for one of the supergroups

Geometrically, we turn on \mathcal{Z}_{ab} along S^3 and squash along $S^1 \hookrightarrow S^3 \to S^2$

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + \frac{\upsilon}{16|G^2|} \left[\mathrm{d}\theta^2 + \sin^2\theta \, \mathrm{d}\phi^2 + \upsilon (\mathrm{d}\omega + \cos\theta \, \mathrm{d}\phi)^2 \right]$$
$$\upsilon \equiv \left(1 + \frac{|\mathcal{Z}|^2}{32|G^2|} \right)^{-1}, \qquad 0 \le \upsilon < 1$$

Can repeat for spacelike G_a to give deformations of $AdS_3 \times \mathbb{R}$.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Menagerie of ${\cal N}=2$ backgrounds: Mixed cases

Mixed cases arise with G_a and \mathcal{Z}_{ab} turned on

Active backgrounds	Geometry
G_a timelike	$\mathbb{R} \times S^3$
\mathcal{Z}_{ab} elliptic $(\mathcal{Z} ^2 > 0)$	$\mathbb{R} imes S^3$ squashed
G_a null	
\mathcal{Z}_{ab} elliptic	
\mathcal{Z}_{ab} parabolic ($ \mathcal{Z} ^2=0$)	plane wave
G_a spacelike	$AdS_3 \times \mathbb{R}$
\mathcal{Z}_{ab} elliptic	
$0 < \mathcal{Z} ^2 < 32 G^2$	
$ \mathcal{Z} ^2 = 32 G^2$	
$ \mathcal{Z} ^2 > 32 G^2$	
\mathcal{Z}_{ab} parabolic	
\mathcal{Z}_{ab} hyperbolic ($ \mathcal{Z} ^2 < 0$)	spacelike squashed $AdS_3 \times \mathbb{R}$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Menagerie of ${\cal N}=2$ backgrounds: Mixed cases

Mixed cases arise with G_a and \mathcal{Z}_{ab} turned on

Active backgrounds	Geometry
G_a timelike	$\mathbb{R} \times S^3$
\mathcal{Z}_{ab} elliptic $(\mathcal{Z} ^2 > 0)$	$\mathbb{R} imes S^3$ squashed
G_a null	plane wave
\mathcal{Z}_{ab} elliptic	'lightlike' $S^3 imes\mathbb{R}$
\mathcal{Z}_{ab} parabolic ($ \mathcal{Z} ^2 = 0$)	plane wave
G_a spacelike	$AdS_3 \times \mathbb{R}$
\mathcal{Z}_{ab} elliptic	
$0 < \mathcal{Z} ^2 < 32 G^2$	timelike stretched $AdS_3 imes \mathbb{R}$
$ \mathcal{Z} ^2 = 32 G^2$	$Heis_3 imes \mathbb{R}$
$ \mathcal{Z} ^2 > 32 G^2$	warped 'Lorentzian' $S^3 imes \mathbb{R}$
\mathcal{Z}_{ab} parabolic	null warped $AdS_3 imes \mathbb{R}$
\mathcal{Z}_{ab} hyperbolic ($ \mathcal{Z} ^2 < 0$)	spacelike squashed $AdS_3 imes \mathbb{R}$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Euclidean backgrounds

The entire analysis can be repeated for Euclidean signature.

• We chose 4D N=2 spinors to be symplectic Majorana-Weyl. Left-handed and right-handed supercharges completely independent of each other. \implies independently choose S_{ij} and \widetilde{S}_{ij} as well as \mathcal{Z}_{ab} and $\widetilde{\mathcal{Z}}_{ab}$

Active backgrounds	Geometry
S^{ij} and \widetilde{S}^{ij}	S^4 and H^4
$G_a{}^i{}_j$	$H^3 imes \mathbb{R}$
G_a	$S^3 \times \mathbb{R}$
$\mathcal{Z} \cdot \widetilde{\mathcal{Z}} < 32 G ^2$	Warped $S^3 imes \mathbb{R}$
$\mathcal{Z} \cdot \widetilde{\mathcal{Z}} = 32 G ^2$	$Heis_3 \times \mathbb{R}$
$\mathcal{Z} \cdot \widetilde{\mathcal{Z}} > 32 G ^2$	Warped Euclidean $AdS_3 imes \mathbb{R}$
\mathcal{Z}_{ab} and $\widetilde{\mathcal{Z}}_{ab}$	$H^2 imes S^2$, $\mathbb{R}^2 imes S^2$ and $H^2 imes \mathbb{R}^2$
S^{ij} , \mathcal{Z}_{ab}	Flat space (deformed susy)

ullet Last case is flat space but includes full SUSY limit of Ω background.

see e.g. [Klare, Zaffaroni '13]

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Euclidean backgrounds

The entire analysis can be repeated for Euclidean signature.

• We chose 4D N=2 spinors to be symplectic Majorana-Weyl. Left-handed and right-handed supercharges completely independent of each other. \Longrightarrow independently choose S_{ij} and \widetilde{S}_{ij} as well as \mathcal{Z}_{ab} and $\widetilde{\mathcal{Z}}_{ab}$

Active backgrounds	Geometry
S^{ij} and \widetilde{S}^{ij}	S^4 and H^4
$G_{a}{}^{i}{}_{j}$	$H^3 imes \mathbb{R}$
G_a	$S^3 \times \mathbb{R}$
$\mathcal{Z} \cdot \widetilde{\mathcal{Z}} < 32 G ^2$	Warped $S^3 imes \mathbb{R}$
$\mathcal{Z} \cdot \widetilde{\mathcal{Z}} = 32 G ^2$	$Heis_3 \times \mathbb{R}$
$\mathcal{Z} \cdot \widetilde{\mathcal{Z}} > 32 G ^2$	Warped Euclidean $AdS_3 imes \mathbb{R}$
\mathcal{Z}_{ab} and $\widetilde{\mathcal{Z}}_{ab}$	$H^2 imes S^2$, $\mathbb{R}^2 imes S^2$ and $H^2 imes \mathbb{R}^2$
S^{ij} , \mathcal{Z}_{ab}	Flat space (deformed susy)

ullet Last case is flat space but includes full SUSY limit of Ω background.

see e.g. [Klare, Zaffaroni '13]

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

The Minkowski story

- Vector multiplet superfield: $\mathcal{X}^I \sim X^I + \theta^{\alpha i} \lambda^I_{\alpha i} + (\theta_j \sigma^{ab} \theta^j) F^I_{ab} + (\theta_i \theta_j) Y^{ijI}$
- ullet Holomorphic prepotential: $F(\mathcal{X})$ Target space is special Kähler with potential $K=iX^Iar{F}_I-iar{X}^IF_I$
- Action principle:

$$-i \int d^4x \, d^4\theta \, F(\mathcal{X}) + \text{h.c.} \,, \qquad g_{IJ} := \partial_I \bar{\partial}_J K = 2 \operatorname{Im} F_{IJ}$$
$$= \int d^4x \left[-g_{IJ} \mathcal{D}_a X^I \mathcal{D}^a \bar{X}^J - \frac{1}{4} \operatorname{Im} F_{IJ} F_{ab}^I F^{abJ} - \frac{1}{4} \operatorname{Re} F_{IJ} F_{ab}^I \tilde{F}^{abJ} + \cdots \right]$$

• Duality transformations lie in $\mathrm{ISp}(2n,\mathbb{R})$

field strengths and duals:
$$\left(rac{F_{ab}{}^I}{G_{ab}I}
ight) \longrightarrow \left(rac{U^I{}_J}{W_{IJ}} - rac{Z^{IJ}}{V_{I}{}^J}
ight) \left(rac{F_{ab}{}^J}{G_{ab}J}
ight)$$
 .

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

The Minkowski story

- $\hbox{ Vector multiplet superfield: } \mathcal{X}^I \sim X^I + \theta^{\alpha i} \lambda^I_{\alpha i} + (\theta_j \sigma^{ab} \theta^j) F^I_{ab} + (\theta_i \theta_j) Y^{ijI}$
- ullet Holomorphic prepotential: $F(\mathcal{X})$ Target space is special Kähler with potential $K=iX^Iar{F}_I-iar{X}^IF_I$
- Action principle:

$$-i \int d^4x \, d^4\theta \, F(\mathcal{X}) + \text{h.c.} \,, \qquad g_{IJ} := \partial_I \bar{\partial}_J K = 2 \operatorname{Im} F_{IJ}$$
$$= \int d^4x \left[-g_{IJ} \mathcal{D}_a X^I \mathcal{D}^a \bar{X}^J - \frac{1}{4} \operatorname{Im} F_{IJ} F_{ab}^I F^{abJ} - \frac{1}{4} \operatorname{Re} F_{IJ} F_{ab}^I \tilde{F}^{abJ} + \cdots \right]$$

• Duality transformations lie in $\mathrm{ISp}(2n,\mathbb{R})$

field strengths and duals:
$$\begin{pmatrix} F_{ab}{}^I \\ G_{abI} \end{pmatrix} \longrightarrow \begin{pmatrix} U^I{}_J & Z^{IJ} \\ W_{IJ} & V_I{}^J \end{pmatrix} \begin{pmatrix} F_{ab}{}^J \\ G_{abJ} \end{pmatrix} \;,$$
 scalars and dual scalars:
$$\begin{pmatrix} X^I \\ F_I \end{pmatrix} \longrightarrow \begin{pmatrix} U^I{}_J & Z^{IJ} \\ W_{IJ} & V_I{}^J \end{pmatrix} \begin{pmatrix} X^J \\ F_J \end{pmatrix} + \begin{pmatrix} C^I \\ C_I \end{pmatrix}$$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

General rigid curved background (8 supercharges)

- Superfield / superspace description fundamentally unchanged.
- ullet If $U(1)_R$ is present, F(X) must be superconformal.
- Background fields introduce new couplings in the action.
 - ullet \mathcal{Z}_{ab} gives new moment couplings like a background vector multiplet, e.g.

$$rac{1}{4}F_{ab}{}^{I}\left(e^{abod}\mathcal{Z}_{cd}(F_{I}-\operatorname{Re}F_{IJ}X^{J})-\mathcal{Z}^{ab}g_{IJ}X^{J}+\operatorname{h.c.}
ight)$$

ullet G_a gives composite $B \wedge F$ term via its dual two-form

$$2i e^{i m n pq} B_{mn} g_{IJ} \mathcal{D}_p X^T \mathcal{D}_q \tilde{X}^J$$

• Duality transformations lie in $\mathrm{ISp}(2n,\mathbb{R})$ but more interesting:

$$egin{pmatrix} igg(igver_{Gab,I}^Figg) & igcup ig(igver_{Gab,I}^{F_{ab}}ig) & ig(ig(igC_{Gab,I}^Fig) & ig(igC_{Gab,I}^Fig) & ig(igC_{I}oldsymbol{\mathcal{Z}}_{ab} + igC_{I}oldsymbol{\mathcal{Z}}_{ab}ig) \end{pmatrix}$$

ullet There is a simple interpretation of these results in terms of a frozen background vector multiplet generating \mathcal{Z}_{ab} .

Daniel Butter (Nikhef)

Rigid $N\,=\,2$ SUSY backgrounds and actions

Perimeter Institute

General rigid curved background (8 supercharges)

- Superfield / superspace description fundamentally unchanged.
- If $U(1)_R$ is present, F(X) must be superconformal.
- Background fields introduce new couplings in the action.
 - \bullet \mathcal{Z}_{ab} gives new moment couplings like a background vector multiplet, e.g.

$$\frac{1}{4}F_{ab}{}^{I}\left(\epsilon^{abcd}\mathcal{Z}_{cd}(F_{I}-\operatorname{Re}F_{IJ}X^{J})-\mathcal{Z}^{ab}g_{IJ}X^{J}+\text{h.c.}\right)$$

ullet G_a gives composite $B \wedge F$ term via its dual two-form

$$2i \epsilon^{mnpq} B_{mn} g_{IJ} \mathcal{D}_p X^I \mathcal{D}_q \bar{X}^J$$

• Duality transformations lie in $ISp(2n, \mathbb{R})$ but more interesting:

$$egin{pmatrix} igg(igver_{Gab,I}^Figg) & igcup ig(igver_{Gab,I}^{F_{ab}}ig) & -ig(ig(igver_{Gab,I}^{F_{ab}}ig) & -ig(ig(igC_{Gab,I}^{F_{ab}}ig) & -ig(igC_{I}oldsymbol{\mathcal{Z}}_{ab} + igC_{I}oldsymbol{\mathcal{Z}}_{ab}ig) \end{pmatrix}$$

ullet There is a simple interpretation of these results in terms of a frozen background vector multiplet generating \mathcal{Z}_{ab} .

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

General rigid curved background (8 supercharges)

- Superfield / superspace description fundamentally unchanged.
- If $U(1)_R$ is present, F(X) must be superconformal.
- Background fields introduce new couplings in the action.
 - Z_{ab} gives new moment couplings like a background vector multiplet, e.g.

$$\frac{1}{4}F_{ab}{}^{I}\left(\epsilon^{abcd}\mathcal{Z}_{cd}(F_{I}-\operatorname{Re}F_{IJ}X^{J})-\mathcal{Z}^{ab}g_{IJ}X^{J}+\text{h.c.}\right)$$

• G_a gives composite $B \wedge F$ term via its dual two-form

$$2i \epsilon^{mnpq} B_{mn} g_{IJ} \mathcal{D}_p X^I \mathcal{D}_q \bar{X}^J$$

• Duality transformations lie in $ISp(2n, \mathbb{R})$ but more interesting:

$$\begin{pmatrix} F_{ab}{}^{I} \\ G_{abI} \end{pmatrix} \longrightarrow \begin{pmatrix} U^{I}{}_{J} & Z^{IJ} \\ W_{IJ} & V_{I}{}^{J} \end{pmatrix} \begin{pmatrix} F_{ab}{}^{J} \\ G_{abJ} \end{pmatrix} - \begin{pmatrix} C^{I}\mathcal{Z}_{ab} + \bar{C}^{I}\bar{\mathcal{Z}}_{ab} \\ C_{I}\mathcal{Z}_{ab} + \bar{C}_{I}\bar{\mathcal{Z}}_{ab} \end{pmatrix}$$

• There is a simple interpretation of these results in terms of a frozen background vector multiplet generating \mathcal{Z}_{ab} .

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

General rigid curved background (8 supercharges)

SUSY transformations are deformed

$$\delta \lambda_{\alpha i}{}^{I} = (F_{ab}{}^{I} + \mathcal{Z}_{ab}X^{I} + \bar{\mathcal{Z}}_{ab}\bar{X}^{I})(\sigma^{ab}\xi_{i})_{\alpha} + (Y_{ij}{}^{I} + 2S_{ij}X^{I})\xi_{\alpha}{}^{j}$$
$$- 2i\,\mathcal{D}_{a}X^{I}\,(\sigma^{a}\bar{\xi}_{i})_{\alpha} + 4i\,G_{a\,ij}X^{I}\,(\sigma^{a}\bar{\xi}^{j})_{\alpha}$$

This modifies the conditions for SUSY vacua in certain backgrounds

$$\bullet \ G_{a\,ij}X^I=0$$

If
$$U(1)_R$$
 present, X^I must vanish.

$$Y_{ij}^{I} = -2S_{ij}X^{I} = -2\bar{S}_{ij}\bar{X}^{I}$$

Fixes phase of
$$X^I$$

•
$$F_{ab}^{\ \ I} = -Z_{ab}X^I - \bar{Z}_{ab}\bar{X}^I$$

Generalized attractor equation

Last result generalizes the standard BPS attractor equation

[Ferrara, Kallosh, Strominger '95; Ferrara, Kallosh '96]

Straightforward to generalize to non-abelian vector multiplets.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

General rigid curved background (8 supercharges)

SUSY transformations are deformed

$$\delta \lambda_{\alpha i}{}^{I} = (F_{ab}{}^{I} + \mathcal{Z}_{ab}X^{I} + \bar{\mathcal{Z}}_{ab}\bar{X}^{I})(\sigma^{ab}\xi_{i})_{\alpha} + (Y_{ij}{}^{I} + 2S_{ij}X^{I})\xi_{\alpha}{}^{j}$$
$$- 2i\,\mathcal{D}_{a}X^{I}\,(\sigma^{a}\bar{\xi}_{i})_{\alpha} + 4i\,G_{a\,ij}X^{I}\,(\sigma^{a}\bar{\xi}^{j})_{\alpha}$$

This modifies the conditions for SUSY vacua in certain backgrounds

$$\bullet \ G_{a\,ij}X^I=0$$

If $U(1)_R$ present, X^I must vanish.

$$Y_{ij}{}^{I} = -2S_{ij}X^{I} = -2\bar{S}_{ij}\bar{X}^{I}$$

Fixes phase of X^I

•
$$F_{ab}{}^I = -Z_{ab}X^I - \bar{Z}_{ab}\bar{X}^I$$

Generalized attractor equation

Last result generalizes the standard BPS attractor equation

[Ferrara, Kallosh, Strominger '95; Ferrara, Kallosh '96]

Straightforward to generalize to non-abelian vector multiplets.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

The Minkowski story

Hypermultiplet scalars: complex scalars A, B in conjugate reps

Interacting case generically described by sigma model with fields ϕ^{M}

- ullet Metric g_{MN} describes hyperkähler target space manifold
- ullet Three covariantly constant integrable complex structures $(\mathcal{J}_I)^M{}_N$ obeying

$$\mathcal{J}_I \mathcal{J}_J = -\delta_{IJ} + \varepsilon_{IJK} \mathcal{J}_K$$

∃ Description in extended harmonic / projective superspace

[Galperin, Ivanov, Ogievetsky, Sokatchev '88; Lindström, Roček '08]

- \bullet Fields ϕ^M grouped into superfields ${\cal Q}$ depending on auxiliary S^2 with coordinates u_i^+ and u_i^-
- ullet Harmonic case described by "Hamiltonian" $\mathcal{H}(\mathcal{Q},u_i^\pm)$
- Projective (twistor) case described by "canonical transformation" $\mathcal{F}(\mathcal{Q}, u_i^+)$. Projective version can be derived from harmonic. [DB '12]
- One can produce component actions using either. [DB 1410.3604, 1508.07718]

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

The Minkowski story

Hypermultiplet scalars: complex scalars A, B in conjugate reps

Interacting case generically described by sigma model with fields ϕ^{M}

- ullet Metric g_{MN} describes hyperkähler target space manifold
- ullet Three covariantly constant integrable complex structures $(\mathcal{J}_I)^M{}_N$ obeying

$$\mathcal{J}_I \mathcal{J}_J = -\delta_{IJ} + \varepsilon_{IJK} \mathcal{J}_K$$

∃ Description in extended harmonic / projective superspace

[Galperin, Ivanov, Ogievetsky, Sokatchev '88; Lindström, Roček '08]

- \bullet Fields ϕ^M grouped into superfields ${\cal Q}$ depending on auxiliary S^2 with coordinates u_i^+ and u_i^-
- ullet Harmonic case described by "Hamiltonian" $\mathcal{H}(\mathcal{Q},u_i^\pm)$
- Projective (twistor) case described by "canonical transformation" $\mathcal{F}(\mathcal{Q}, u_i^+)$. Projective version can be derived from harmonic. [DB '12]
- One can produce component actions using either. [DB 1410.3604, 1508.07718]

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

General rigid curved background (8 supercharges)

Same basic procedure holds... except target space structure has additional requirements inherited from R-symmetry in SUSY algebra.

SU(2) R-symmetry	Target space
none	arbitrary HK
$SO(2)_R$	HK with special K.V. that rotates \mathcal{J}_I
$SU(2)_R$	hyperkähler cone (conformal K.V.)

These restrictions appear in harmonic / projective superspace because prepotential
 H or F can only depend on S² coordinates in certain ways.
 The SO(2) a case was previously noted in A/S, and A/S.

[DB, Kuzenko '11; Bagger, Xiong '11]

 \bullet New couplings present: e.g. $G_{\bullet}^{-\omega}$ contributes $B\wedge F$ term

$$e^{mnnn}B_{mn} \supseteq \partial_n \phi^M \partial_n \phi^N \Omega_M N$$
 is

- Full SUSY configurations must obey:
 - If $SU(2)_R$ present, scalars at origin of HK cone. (C.K.V. vanishes)
 - If $SO(2)_R$ present, special K.V. parallel to any gauged isometries.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

General rigid curved background (8 supercharges)

Same basic procedure holds... except target space structure has additional requirements inherited from R-symmetry in SUSY algebra.

SU(2) R-symmetry	Target space
none	arbitrary HK
$SO(2)_R$	HK with special K.V. that rotates \mathcal{J}_I
$SU(2)_R$	hyperkähler cone (conformal K.V.)

• These restrictions appear in harmonic / projective superspace because prepotential \mathcal{H} or \mathcal{F} can only depend on S^2 coordinates in certain ways.

The SO(2) was previously noted in MS, and MS.

[DB, Kuzenko '11: Bagger, Xiong '11]

ullet New couplings present: e.g. $G_a{}^\omega$ contributes $B \wedge F$ term

$$+\epsilon^{m\,n m}B_{mn}{}^{Q}\partial_{\mu}\phi^{N}\partial_{\mu}\phi^{N}\Omega_{MN}{}_{N}$$

- Full SUSY configurations must obey:
 - If $SU(2)_R$ present, scalars at origin of HK cone. (C.K.V. vanishes)
 - If $SO(2)_R$ present, special K.V. parallel to any gauged isometries.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

General rigid curved background (8 supercharges)

Same basic procedure holds... except target space structure has additional requirements inherited from R-symmetry in SUSY algebra.

SU(2) R-symmetry	Target space
none	arbitrary HK
$SO(2)_R$	HK with special K.V. that rotates \mathcal{J}_I
$SU(2)_R$	hyperkähler cone (conformal K.V.)

• These restrictions appear in harmonic / projective superspace because prepotential \mathcal{H} or \mathcal{F} can only depend on S^2 coordinates in certain ways. The $SO(2)_R$ case was previously noted in AdS_4 and AdS_5 .

[DB, Kuzenko '11; Bagger, Xiong '11]

- ullet New couplings present: e.g. $G_b{}^{\omega}$ contributes $B\wedge F$ term
 - $\epsilon^{\prime\prime\prime\prime\prime\prime\prime\prime}B_{mm}$ $^{\prime\prime\prime}$ $\partial_{p}\phi^{\prime\prime\prime}$ $\partial_{q}\phi^{\prime\prime\prime}$ Ω_{MN} $_{N}$
- Full SUSY configurations must obey:
 - If $SU(2)_R$ present, scalars at origin of HK cone. (C.K.V. vanishes)
 - ullet If $SO(2)_R$ present, special K.V. parallel to any gauged isometries

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

26 / 28

Pirsa: 15090089 Page 55/59

General rigid curved background (8 supercharges)

Same basic procedure holds... except target space structure has additional requirements inherited from R-symmetry in SUSY algebra.

SU(2) R-symmetry	Target space
none	arbitrary HK
$SO(2)_R$	HK with special K.V. that rotates \mathcal{J}_I
$SU(2)_R$	hyperkähler cone (conformal K.V.)

• These restrictions appear in harmonic / projective superspace because prepotential \mathcal{H} or \mathcal{F} can only depend on S^2 coordinates in certain ways. The $SO(2)_R$ case was previously noted in AdS_4 and AdS_5 .

[DB, Kuzenko '11; Bagger, Xiong '11]

ullet New couplings present: e.g. $G_a{}^{ij}$ contributes $B\wedge F$ term

$$\epsilon^{mnpq} B_{mn}{}^{ij} \partial_p \phi^M \partial_q \phi^N \Omega_{MN \, ij}$$

- Full SUSY configurations must obey:
 - If $SU(2)_R$ present, scalars at origin of HK cone. (C.K.V. vanishes)
 - If $SO(2)_R$ present, special K.V. parallel to any gauged isometries.

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Example: $N=2^*$ action

Choose diagonal metric $g_{IJ} = \delta_{IJ}$ and adjoint hypermultiplet with scalars (A^I, B_I) . In Minkowski background, mass term m softly breaks N=4 to $N=2^*$.

In a general rigid background, the Lagrangian is

$$\mathcal{L} = -\mathcal{D}_m \bar{A}_I \mathcal{D}^m A^I - \mathcal{D}_m \bar{B}^I \mathcal{D}^m B_I - \mathcal{D}_m \bar{X}^I \mathcal{D}^m X^I - \frac{1}{8} F_{ab}{}^I F^{abI} - \frac{1}{2} F_{ab}{}^I (\mathcal{Z}^{ab+} X^I + \bar{\mathcal{Z}}^{ab-} \bar{X}^I) + \mathcal{L}_{BF} + \mathcal{L}_{pot} + \text{fermions}$$

ullet The BF term involves couplings to the potentials for G_a and $G_a{}^G$.

$$\begin{split} \mathcal{L}_{BF} &= 2i\,\epsilon^{mnpq}B_{mn}\partial_{\rho}X^{I}\partial_{q}X^{I} + 2\,\epsilon^{mnpq}B_{mn}^{-12}(\partial_{\rho}A^{I}\partial_{q}A_{I} + \partial_{\rho}B_{I}\partial_{q}B^{I}) \\ &+ 2\,\epsilon^{mnpq}B_{mn}^{-11}\partial_{\rho}A^{I}\partial_{q}B_{I} + 2\,\epsilon^{mnpq}B_{mn}^{-22}\partial_{\rho}\bar{A}_{I}\partial_{q}\bar{B}^{I} \end{split}$$

New contributions to scalar potential:

$$\mathcal{L}_{post} = (2|S|^2 - m^2)(A^I \bar{A}_I + B_I \bar{B}^I) + 2|S|^2 X^I \bar{X}^I + i\sqrt{2}|S|m(A^I B_I - \bar{A}_I \bar{B}^I)$$

$$= \frac{1}{8} Z_{ab} \bar{Z}^{ab} \left(2X^I \bar{X}^I + A^I \bar{A}_I + B_I \bar{B}^I \right) - \frac{1}{4} (\mathcal{Z}_{ab}^*)^2 X^I \bar{X}^I - \frac{1}{4} (\mathcal{Z}_{ab}^*)^2 \bar{X}^I \bar{X}^I$$

$$+ 2G_{ab} G^{ab} \bar{X}^I \bar{X}^I + 4G^2 (A^I \bar{A}_I + B_I \bar{B}^I)$$

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

Conclusions / Open questions

We have found all (global) rigid N=2 spaces and constructed general rigid actions for vector and hypermultiplets. Some gaps / unanswered questions.

- We assumed global manifolds, but what about discrete quotients? e.g. The $\mathbb{R} \times S^3$: one can quotient along U(1) fiber, giving a lens space S^3/\mathbb{Z}_p .
- Is there a dynamical origin of all rigid supersymmetric backgrounds? Not for 4D supergravity + normal matter! [Hristov, Looyestijn, Vandoren '09] But perhaps by compactifying higher dimensional theories. e.g. $D(2,1;\alpha)$ from 6D theory with vacuum $AdS_2 \times S^2 \times S^2$ [Zarembo '10; Wulff '14]
- Many spaces include trivial $\mathbb R$ factors, so reduction to Euclidean or Lorentzian 3D N=4 is clearly possible. What are the other 3D N=4 spaces?
- We exploited coset structure to radically simplify analysis.
 What about four supercharges for N = 2 where this does not apply?
- General compensator doesn't seem to give new backgrounds for our case. What about for four supercharges for $N\!=\!2$ or two supercharges for $N\!=\!1$? see [Triendl 1509.02926]

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

28 / 28

Pirsa: 15090089 Page 58/59

Thanks for your attention!

Daniel Butter (Nikhef)

Rigid N=2 SUSY backgrounds and actions

Perimeter Institute

28 / 28

Pirsa: 15090089 Page 59/59