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Abstract: <p>I will discuss how to classify (up to discrete identifications) all rigid 4D N=2 supersymmetric backgrounds in both Lorentzian and
Euclidean signatures that preserve eight real supercharges. These include backgrounds such as warped S 3A—R, warped AdS 3A—R, and
AdS 2A—S"2, as well as some more exotic geometries. | will also address how to construct all supersymmetric two-derivative actions involving
hypermultiplets and vector multiplets in these backgrounds.</p>
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Motivation: Rigid SUSY on curved manifolds

Lots of work about exploiting SUSY on curved manifolds
e Wilson loop observables in ¥V = 4 on S*

@ Partition functions of NV = 2 theories on S~ to test various dualities

e Computation of various indices for supersymmetric theories, etc.
[Romelsberger "07]

But how does one put a known supersymmetric field theory
on a curved manifold in the first place?

[Pestun "07]

[Kapustin, Willett, Yaakov "10]

see also [Jafferis; Hama, Hosomichi, Lee; Imamura, Yokoyama; - - -

Penmeter Institute
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Motivation: Rigid SUSY on curved manifolds

Characterizing rigid manifolds with some SUSY

@ 4D N = 1 theories with one or more supercharges and applications

e Classification of possible Euclidean theories [Dumitrescu, Festuccia, Seiberg "12]
e Lorentzian theories (and holography)
[Cassani, Klare, Martelli, Tomasiello, Zaffaroni "12)

Not a lot of work on 4D N = 2
@ N = 2 theories have interesting features and more SUSY to exploit...

e Classification of backgrounds with one supercharge: 3 CKV
[Gupta, Murthy; Klare, Zaffaroni "13]
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Motivation: Rigid SUSY on curved manifolds

Characterizing rigid manifolds with some SUSY

@ 4D N = 1 theories with one or more supercharges and applications

e Classification of possible Euclidean theories [Dumitrescu, Festuccia, Seiberg "12]
e Lorentzian theories (and holography)

[Cassani, Klare, Martelli, Tomasiello, Zaffaroni "12]
Not a lot of work on 4D N = 2

@ N = 2 theories have interesting features and more SUSY to exploit...
e Classification of backgrounds with one supercharge: 3 CKV
[Gupta, Murthy; Klare, Zaffaroni "13]

We will address the following questions:

What are all curved backgrounds consistent with full rigid N = 2 SUSY?
What are all rigid actions for vector multiplets and hypermultiplets? J
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Lessons from rigid supergravity

Take a pause and recall the lesson of [Festuccia-Seiberg "11]:

A rigid SUSY matter action can be thought of as a coupled matter-SUGRA action
with SUGRA fixed as background... and the auxiliary fields are important.

)
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Lessons from rigid supergravity

Take a pause and recall the lesson of [Festuccia-Seiberg "11]:

A rigid SUSY matter action can be thought of as a coupled matter-SUGRA action
with SUGRA fixed as background... and the auxiliary fields are important. J

Finding a rigid SUSY means solving the SUGRA Killing spinor equation.

oY, = 2D,,,&(x) + auxiliary fields = 0 J

Generically, £€(x) = A(x)e in terms of constants e.

for S, AdS,,, H™ see [Li, Pope, Rahmfeld "98]
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Lessons from rigid supergravity

Take a pause and recall the lesson of [Festuccia-Seiberg "11]:

A rigid SUSY matter action can be thought of as a coupled matter-SUGRA action
with SUGRA fixed as background... and the auxiliary fields are important. J

Finding a rigid SUSY means solving the SUGRA Killing spinor equation.

oY, = 2D,,&(x) + auxiliary fields = 0 J

Generically, £€(x) = A(x)e in terms of constants e.

for S, AdS,,, H™ see [Li, Pope, Rahmfeld "98]
Two observations:

@ Number of solutions ¢ = number of rigid supercharges
s Requring more supercharges gives stronger conditions.

@ Choice of N (and off-shell sugra) determines the form of the equation.
= Increasing N gives weaker conditions b/c more auxiliary fields.
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Lessons from rigid supergravity

Take a pause and recall the lesson of [Festuccia-Seiberg "11]:

A rigid SUSY matter action can be thought of as a coupled matter-SUGRA action
with SUGRA fixed as background... and the auxiliary fields are important. J

Finding a rigid SUSY means solving the SUGRA Killing spinor equation.

oY, = 2D,,&(x) + auxiliary fields = 0 J

Generically, £€(x) = A(x)e in terms of constants e.

for S, AdS,,, H™ see [Li, Pope, Rahmfeld "98]
Two observations:
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== Requring more supercharges gives stronger conditions.

@ Choice of NV (and off-shell sugra) determines the form of the equation.
= Increasing N gives weaker conditions b/c more auxiliary fields.
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Lessons from rigid supergravity

Example: Different off-shell N =1 SUGRAs lead to different backgrounds.
@ Old minimal SUGRA: auxiliaries (G, and A
Drnfu - I-Gb(nab Bl Uab)a.j&.i’ + i M (Urné)u = ) J

e Four (Euclidean) supercharges: B x S° R x H?, S* or H"

@ New minimal SUGRA: U (1) gauge field A,,, and two-form auxiliary B,,,,,

‘D:(r;;‘)gu - iﬁb(’]ab = aub)u 36.3 = 0 J

- — +3 ™ 3
e Four (Euclidean) supercharges: ® x S” or R x H

We should use the most general auxiliaries for N = 2.
What is the most general off-shell N =2 SUGRA?
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General off-shell N = 2 SUGRA

Conformal SUGRA: 24b+24f

(4 L

‘ b 4 f{' i - /"' S / -
€,n Uryna ! m ! 11 || | ab X xi D

Rigid N =2 SUSY backgrounds and actions
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General off-shell N = 2 SUGRA

Conformal SUGRA: 24b+24f

(4] L

€,n YV'nao "frn - 7 ‘/‘:n || I .a_b X exi D

Rigid N 2 SUSY backgrounds and actions
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General off-shell N = 2 SUGRA

Conformal SUGRA: 24b-+24f
ernu - ‘frnjj ‘/Trn || | .u_b X xi D

’ -
(& rricx

Use the longest possible compensator

General scalar multiplet: 128b + 128f

O p || e S G, Gat;

Rigid N 2 SUSY backgrounds and actions
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General off-shell N = 2 SUGRA

Conformal SUGRA: 24b-+24f
e:nu ; ‘/;n l7_j ‘/Trn || " .a_b X xi D

T
t rricx

Use the longest possible compensator

General scalar multiplet: 128b + 128f

Q A || Y. GiJ G, ol
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General SUGRA to rigid SUSY

General SUGRA Killing spinor equation:

~ . t - i ] . . ’ ri
0 = (’Q(- rrcx — —)Dru‘ful o "Sij(drnhs )(l L "-’-Zrunld Et x
" - I Py ‘ It} e
+ 421G (OnmSi)a — 2G J(Unﬂrn\_; ) N

Daniel Butter (Nikhef Rigid N = SUSY backgrounds and actions Penmeter Institute
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General SUGRA to rigid SUSY

General SUGRA Killing spinor equation:

() - (SQL'rfc(r‘ B .—)‘Druful o I..S',)(('T,,,.S’ .)tl + ’.Zrun(o’“sl )(r
+ 11("“ (.(‘THH'!‘EI .)u T 2("“ J: (Urldrnkc._; )u
Helpful to express this in superspace... [Howe '82]

General SUGRA algebra (schematic form)

{D_.*.Ds’} = Lorentz and R-symmetry curvatures ,
{Da", ’If)‘;J} = —2i c)'j'Dn_-, + Lorentz and R-symmetry curvatures
curvatures involve: S, Zry G GNJd%CE

A rigid SUSY must leave the curvatures invariant.

5,87 = EDESY =0 = DESY =0 — {D,..D5}S"7 =0

Integrability conditions imply that all curvatures are (covariantly) constant.
[Kuzenko "12; + Novak, Tartaglino-Mazzucchelli "14]
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General SUGRA to rigid SUSY

General SUGRA Killing spinor equation:

- . t P . v ’ - L -~
O = 0q¥ma = —)Dncfux — ’-Stl(_dnus Ja + ’Zrun(d €i)a

- Y ri C . L - O 3
-+ ’ll(! (.(7”;“\; _)u — ‘3(’ J(Urlﬂrn\_; ,)u

Helpful to express this in superspace... [Howe '82]

General SUGRA algebra (schematic form)

o'-Dsz’} = Lorentz an -symme curvatures ,
D.*, Dg? L t d R-sy try t
{D-", ’f)‘-,J} = —2i (SJ'D“_-, + Lorentz and R-symmetry curvatures

curvatures involve: S, b, SRR £ S G,"7 = &Gk,

A rigid SUSY must leave the curvatures invariant.
5,87 = EDESY =0 = DSV =0 = {D,.D5}S"7 =0

Integrability conditions imply that all curvatures are (covariantly) constant.
[Kuzenko "12; + Novak, Tartaglino-Mazzucchelli "14]

Penmeter Institute 9 28
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General SUGRA to rigid SUSY

General SUGRA Killing spinor equation:

- v ri P é Yre ) - c )
+ 4G (.(‘THF.H‘\J .)u — 2 :(‘Urldrn\_; )a

Helpful to express this in superspace...

General SUGRA algebra (schematic form)

- . ‘ & - - L4 ’ - 'I ) \
0= lr’Qf- o - —)Dr:¢£¢u - ’-Szj((’n:f'..— o + ’Zrun(d E: )a

[Howe "82]

{D_.*.Ds’} = Lorentz and R-symmetry curvatures ,
{D.".Dys;} = —2i6;D,; + Lorentz and R-symmetry curvatures
curvatures involve: S, Z., . G.. G.,”7 = FG.

A rigid SUSY must leave the curvatures invariant.

8,8 = £gDESY =0 = DESY =0 =

[Kuzenko "12; + Novak, Tart

Rigid N 2 SUSY backgrounds and actions
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{Dt. DLYS7 =0

Integrability conditions imply that all curvatures are (covariantly) constant.

aglino-Mazzucchelli "'14]
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From constant curvatures to coset spaces

Riemann tensor is explicitly determined

~ ~cd -~ ~cd
(‘J‘II,A_I _+_ i by < )

Ruh‘ “ - ‘S-‘I‘S-‘:)(iu‘r()-hd‘ —

o] -

. v2 ¢ [ > | . . v C N | ¥ v - le ¢ ] 3 v " > |
+ 8G2%58.5%Y — 16 GG, + .1(,{,(,}.'0,, “8&p! — 8G G 6"

Although all curvature tensors specified, we really want to know:
e What is the (global) structure of these spaces?

@ How do we know the full set of Killing spinors actually exists?
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From constant curvatures to coset spaces

Riemann tensor is explicitly determined

cd 't ] O - e o d - ~cd -~ ~cd
Ruh = S5 ‘S:J(’u‘ op""' — (‘Zub"—’ + Zap )

o] -

3 "..3 - [ - J’ . . 17 i i. v v - e ¢ 1' b v '.( " i
+ 8 G70,. 0, — 16 (r” 70+ -l(r{,(:}}()”'( op“! — *“‘('f;’,('i;"h'('

Although all curvature tensors specified, we really want to know:
e What is the (global) structure of these spaces?
@ How do we know the full set of Killing spinors actually exists?

We can easily resolve all these issues if we realize one important fact:

constant curvature tensors =D (super) coset space

More accurately: for any superspace algebra with constant curvatures,
we can construct a (global) super coset space with the same curvatures.

2 SUSY backgrounds
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From constant curvatures to coset spaces

Riemann tensor is explicitly determined
cd 't )] O - e g d 1 ~ ~cd -~ ~ocd
Ruh =S5 ‘S:)(’u‘ op" ' — 3(‘-’411;“-' + Zab )
+ 8G?3.'0 Y — 16 G, G 6" + 4GL,GF 6.'60Y — 8G) G564
Although all curvature tensors specified, we really want to know:
e What is the (global) structure of these spaces?
@ How do we know the full set of Killing spinors actually exists?
We can easily resolve all these issues if we realize one important fact:

constant curvature tensors =D (super) coset space

More accurately: for any superspace algebra with constant curvatures,
we can construct a (global) super coset space with the same curvatures.
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Review: Coset spaces

Consider a Lie group G with a subgroup H.

h.h] = b . h. R = KR,

Schematically, G/ H is generated by K.

= SUSY backgrounds and

Pirsa: 15090089

2T

KRR =8K+0bh

ons

The coset space (G/H is the space of equivalences g = gh for g « G and h € H.
Take Lie algebras g and h and assume g = KR & h where
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Review: Coset spaces

Consider a Lie group G with a subgroup H.

The coset space (G/H is the space of equivalences g = gh for g « G and h € H.
Take Lie algebras g and h and assume g = KR & h where

h.h] =5 . h.R] = K, R.R =8+050

Schematically, G/ H is generated by K.

More constructively...
@ Denote 8 = {FP,} and b = {Al.:}.
@ Introduce representative coset element: L(xr) = exp(x“ f’,,)-

@ Action of (G on the coset space (G/H can always be written

gL(x) = L(x") h(g.x) = L(z") Yg € G
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Review: Local coset space geometry

Local geometry is encoded in the coset representative L(xr) = exp(xz®P,).

1. Construct Cartan-Maurer form

. 1 .
L71AL = dz™ (e () Pa + 5wm® () Ma)

2. Covariant derivs D, = ¢, (0,,, — 5%m “bAr..) inherit algebra.
-}:) X ¢ [‘) | cd \A[
£ a- bl - _fu[.l c 3.}:111 VLo -
[~ - 1 - 1 cd \ o o cd cd
_Du- Dhl — _Y‘uh Dl‘ - 31?{1’3 - [r'd . 7:1') — ab . Ruh — Jab -

3. Local isometries are the Killing vectors £“(x) that obey D ,&,, = 0.
But they are also encoded algebraically

L I((“Iju L %/\”b-‘[uh_)[o — E”[-r)[)u L %Eub(_-’-)-‘[uh

Schematically, £€“(x) = A(x)%, € + B(x)%pe A

Pirsa: 15090089 Page 26/59



Supercoset spaces

Same approach holds for supercoset spaces.

e Choose a supercoset representative: L = exp(x®P, + 0,Q" + 0'Q;).

@ Killing spinors are trivial to calculate (only 8 = 0 part is needed)

L Y(eQ; + QL = €1(2)Q; + &(x2)Q!

ct -2
Schematically, (‘:_: = A(x) (:_ )
S (]

1

see e.g. [Alonso-Alberca, Lozano-Tellechea, Ortin '02]

This gives algebraic procedure for constructing the Killing spinors.
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Supercoset spaces

Same approach holds for supercoset spaces.

@ Choose a supercoset representative: L = exp(x“ f’,, — (),—(‘)‘ -+ 0_‘(:3,-).

@ Killing spinors are trivial to calculate (only 8 = 0 part is needed)

L YeQ: + & Q)L = €1(2)Q; + &:(x)Q

ct -2
Schematically, (‘:_: = A(x) (:_ )
S ]

1

see e.g. [Alonso-Alberca, Lozano-Tellechea, Ortin '02]

This gives algebraic procedure for constructing the Killing spinors.

Pirsa: 15090089 Page 28/59



Classifying the allowed spaces

Background constant fields:

.t"l—' - 3:1 B . ("1.' - (;l.{ l_}

@ Z., is a complex field strength, dZ = 0.
If the SUGRA algebra has (complex) central charge, Z,, is its field strength.

@ (., may be thought of as dual of three-form field strength H ;...
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Classifying the allowed spaces

Background constant fields:

."'IJ - 3:1 B . ("1.' - (;l.{ l_}

@ Z., is a complex field strength, dZ = 0.
If the SUGRA algebra has (complex) central charge, Z,, is its field strength.

e (., may be thought of as dual of three-form field strength H ;...

= SUSY backgrounds and actions
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Classifying the allowed spaces

Background constant fields:

vl - ¥ '
." - - 3“ bH - (l @ - ("u J

@ Z., is a complex field strength, dZ = 0.
If the SUGRA algebra has (complex) central charge, Z,, is its field strength.

@ (., may be thought of as dual of three-form field strength H ;...

Three sets of solutions to integrability conditions for background fields:
1. S;; alone is nonzero
2. G,"” alone is nonzero and decomposes as &, = g,v"’

3. G, and/or Z,; are nonzero and obey G“Z_,, = 0
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Classifying the allowed spaces

Background constant fields:

vl ) - ¥ v 1
.‘.-' - 43“ b . (l @ = (' a )

@ Z., is a complex field strength, dZ = 0.
If the SUGRA algebra has (complex) central charge, Z,, is its field strength.

e (., may be thought of as dual of three-form field strength H ;...

Three sets of solutions to integrability conditions for background fields:
1. S;; alone is nonzero
2. G,"” alone is nonzero and decomposes as G, = g,v"’

3. G, and/or Z,; are nonzero and obey G“Z,, = 0

Background fields determine R-symmetries in two ways:
@ Their VEVs break some of the R-symmetry.
@ They generate R-symmetry within the SUSY algebra.

(Do’ D3’} ~ € €as S " Iu+ ZasI? . {Da'.Ds;} ~G. 3I'; + G, 5 ;A

X P J x 4
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Classifying the allowed spaces

Background constant fields:

vl - v 1
-" ~ - 3“ bH . (l @2 = ("u J

@ Z., is a complex field strength, dZ = 0.
If the SUGRA algebra has (complex) central charge, Z,, is its field strength.

e (., may be thought of as dual of three-form field strength H ;...

Three sets of solutions to integrability conditions for background fields:
1. S;; alone is nonzero
2. G,"” alone is nonzero and decomposes as &, = g,v"’

3. G, and/or Z,; are nonzero and obey G“Z,,, = 0

Background fields determine R-symmetries in two ways:

@ Their VEVs break some of the R-symmetry.

@ They generate R-symmetry within the SUSY algebra.
(Do’ D3’} ~ € €as S I+ Zasl” . {Dua'. Dy} ~G 3I'; + G 5" A

Pirsa: 15090089 Page 33/59



Classifying the allowed spaces

Background constant fields:

.‘.;IJ - z“ bH . (l'(.' - ("u l_}

@ Z., is a complex field strength, dZ = 0.
If the SUGRA algebra has (complex) central charge, Z,, is its field strength.

e (., may be thought of as dual of three-form field strength H ;...

Three sets of solutions to integrability conditions for background fields:
1. S;; alone is nonzero
2. G, alone is nonzero and decomposes as G,/ = g,v"’

3. G, and/or Z,; are nonzero and obey G“Z,,, = 0

Background fields determine R-symmetries in two ways:
@ Their VEVs break some of the R-symmetry.
@ They generate R-symmetry within the SUSY algebra.

{Do'.Ds’} ~ € €as S I+ ZasI? . {Dua'.Ds;} ~G. 3I'; + G5 ;A

. J x 4
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Menagerie of NV = 2 backgrounds: The simplest cases

Start with the simple Lorentzian cases...

Geometry Active backgrounds Supergroup

AdS,

R x S*
AdSs x R
plane wave

R x S3
AdS;; b4 :‘;_

plane wave

Ang < S

1.1 2

R x §-
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Menagerie of N = 2 backgrounds:

Start with the simple Lorentzian cases...

The simplest cases

Geometry Active backgrounds Supergroup

AdS, St/ OSp(2|4)

R x S* G, ; timelike SU(2/1) x SU(2|1)
AdSs < & o' ; spacelike SU(1.1|1) x SU(1.1]|1)

plane wave G.°; null

B x S* G, timelike
AdS; <x & ;. spacelike
plane wave (;, null

SU(2|2) x SU(2)
SU(1.1|2) x SU(1.1)

Ang x S
R"! x §°

—.
AdS: < &~
plane wave
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AdS> x S% and D(2,1; o)

Some historical observations

@ A non-trivial spherically symmetric solution of N = 2 gauged supergravity is
AdS,> x S? of equal radii. The eight supercharges give SU(1.1|2).

This describes the near horizon geometry of an extremal BPS
Reissner-Nordstrom black hole. (Related to attractor mechanism.)

[Ferrara, Kallosh, Strominger '95; Ferrara, Kallosh "96]

@ Can be generalized to different radii supergeometries with supergroup
D(2.1: o). (Not SUGRA solutions!) [Bandos, Ivanov, Lukierski, Sorokin "02]

D(2.1:«x) has bosonic part SU(1.1) x SU(2) x SU(2)r with Qszs: € (2.2.2)

{(Jf_l TR (Ji: } 7 } o _/\ € x vf‘ ’_f 7—(_4{") _/\ i€ (—JE:( ’_f 'I—(—\ 3 +( /\ = /\ )( ;}i,‘ 1—1.; 1’1
AdS- S2 .“'(-Il'“

The Euclidean version has been studied recently with various applications.

[Bawane, Bonelli, Ronzani, Tanzini '14; Sinamuli "14; Rodriguez-Gomez and Schmude "15]
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Deforming these spaces: Squashing R x S*

Squashing the S is only possible for one of the supergroups

G, G,
SU(2|2) x SU(2) SU(2|1) x SU(2|1)
Zub
SU((2|2) x U(1) Not possible

Geometrically, we turn on Z,; along S? and squash along S! «— §% — 52

> > v r > . D » LD
ds® = —dt® + ——— |df#~ + sin“ 0 do” + v(dw + cos (l([(_‘)_l"]
l() (r-! .
Z|1* |-
U — (l T m) () < U < 1

Can repeat for spacelike (G, to give deformations of AdS; x R

A .
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Menagerie of NV = 2 backgrounds: Mixed cases

Mixed cases arise with (G, and Z,_,;, turned on

Active backgrounds Geometry
G. timelike R x S*
Z.p elliptic (|27 > 0) R x S” squashed

(., null
Za.b elliptic
Z.» parabolic (|Z]|% = 0)

A

(. spacelike AdS3 x =
Za.p elliptic
0 < |Z2)? <32G?
1Z|° =32G?
1Z|? > 32G*

¥

Z.» parabolic
Z.s hyperbolic (|Z|° < 0)
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Menagerie of NV = 2 backgrounds: Mixed cases

Mixed cases arise with (G, and Z_,; turned on

Pirsa: 15090089

Active backgrounds Geometry
Go timelike R x S*
Z.p elliptic (|27 > 0) R x S” squashed

‘', null
Z.6 elliptic
Z.» parabolic (|Z]|% = 0)

plane wave
‘lightlike” S* x B
plane wave

(7. spacelike

Za.b elliptic
0 < |Z|? <32G?
|1Z|? = 32G?

|1Z|? > 32G?

Z.» parabolic

Z.s hyperbolic (|Z|° < 0)

AdS; < R

timelike stretched AdS; < =

—

Heis; < =

warped ‘Lorentzian’ S7 x

null warped AdS; < &

spacelike squashed AdS; < E
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Euclidean backgrounds

The entire analysis can be repeated for Euclidean signature.
@ We chose 4D N = 2 spinors to be symplectic Majorana-Weyl.
Left-handed and right-handed supercharges completely independent of each other.
= independently choose S;; and S,; as well as Z,, and Z,,
Active backgrounds Geometry
S*7 and S S* and H!
Ga'; H? xR
G S?* xR
Z.-Z < 32|G)? Warped S* x R
Z-Z=32|G)? Heisz < X
zZ-Z2>32|G = Warped Euclidean AdS; <x R
Z.. and Z.. H? x S22, B2 < S? and H? < B2
S, Bab Flat space (deformed susy)
@ Last case is flat space but includes full SUSY limit of {2 background.
see e.g. [Klare, Zaffaroni "13]
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Euclidean backgrounds

The entire analysis can be repeated for Euclidean signature.
@ We chose 4D N = 2 spinors to be symplectic Majorana-Weyl.
Left-handed and right-handed supercharges completely independent of each other.
= independently choose S;; and S,; as well as Z,, and Z,,
Active backgrounds Geometry
S*7 and S* S* and H!
Ga'; H? xR
G ST xR
Z.-Z < 32|G)? Warped S* x R
Z.-Z=32|G)? Heisz x R
zZ-Z2 >32|G - Warped Euclidean AdS; < R
Z.. and Z.. H? x S22, B2 x S? and H? x<x B2
S, Zab Flat space (deformed susy)
@ Last case is flat space but includes full SUSY limit of {2 background.
see e.g. [Klare, Zaffaroni "13]
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(Abelian) vector multiplets J

The Minkowski story

e Vector multiplet superfield: X/ ~ X! + 0 \!, + (0,007 )F!, + (6,0,)Y"7!
@ Holomorphic prepotential: F(X)
Target space is special Kahler with potential A = iX'F, —iX'F,

@ Action principle:

— ;/ d*xrd*0 F(X) + h.c. . gry = 019; K = 2Im Fy

‘ ~ a1 ~ 1 > -5 ={1O). l - > “;hl ).
— / d*x [ — graD. X'"D*X7 — S Im Fr Fo. o™ — S Re Firy FLF*7 ...
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(Abelian) vector multiplets

The Minkowski story
e Vector multiplet superfield: X/ ~ X! + 0N/, + (0,007 )F!, + (6,0,)Y"7!
@ Holomorphic prepotential: F(X)
Target space is special Kahler with potential A = iX'F, —iX'F,
@ Action principle:
m— i/ (l';.r(l'l() [“(_.1’ :I T ll.('. . qgrJ -— i)](')_; I\’ _ '..).Illl ["1_1
- / d*x [ — g1aD X' D* X7 — —Im Fry FLFe* — —Rl Fry Fl b’
@ Duality transformations lie in ISp(‘.Zn. R)
field strengths and duals: Fab' = ZI | b
& "\ Gabi ” 1J Gab.g
- l I -
scalars and dual scalars: ('\ ) (H - Z ) ('\ ) ( )
1.7

Pirsa: 15090089
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(Abelian) vector multiplets

General rigid curved background (8 supercharges)

@ Superfield / superspace description fundamentally unchanged.

Rigid N =2 SUSY backgrounds and actions
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(Abelian) vector multiplets

General rigid curved background (8 supercharges)

@ Superfield / superspace description fundamentally unchanged.
@ If U(1)r is present, F (X ) must be superconformal.

@ Background fields introduce new couplings in the action.
e Z.,» gives new moment couplings like a background vector multiplet, e.g.
1

~ aboed - / ~ - - - ~ab -7
—11‘..-»,!(( ' Zca( Fr Re F;; X7) Z%grs X7 4 h.(‘.)

e (;, gives composite B N F term via its dual two-form

P T e . =T . > J
2i €™"P9 B, g1, Dy X' D, X
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(Abelian) vector multiplets

General rigid curved background (8 supercharges)

e Superfield / superspace description fundamentally unchanged.
@ If U(1)r is present, F (X ) must be superconformal.

@ Background fields introduce new couplings in the action.
e Z.,» gives new moment couplings like a background vector multiplet, e.g.

1 - aboed - ~ - - —~ (2 O -
—11‘.,»,!(( ‘ " Zea( Fy Re F; ;X ;) 3'} qy 7 X - 3 ll.(‘.)

e (7, gives composite B N F term via its dual two-form

- >e . -1 . 5
-2( € bt 13!!1?‘ _‘l!, D!;-\- Dq’-\

@ Duality transformations lie in ISp(2n.X) but more interesting:
:huhl) . (-I-I Z! I) ub ) 'l Zﬂi' + ('l z”h)
(;ubl ' “-I.l ('uh ( I 4’—'{13: g ( 1 4—'(:’)

@ T here is a simple interpretation of these results in terms of a frozen
background vector multiplet generating Z,,.
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(Abelian) vector multiplets

General rigid curved background (8 supercharges)

SUSY transformations are deformed

Y f ' 1 ! ’ '! o '! \ ab \ - f & g 'l
()’\fll o (I.ub L ‘zuh-\- L Zuh-\ )((7 ‘ E: Jox T (} =I5 ‘2‘811-\ )Etn g

L
0. - -1 "y . -1 \
— 21D, X" (0%i)a +41 G, i; X (09E7)

e

This modifies the conditions for SUSY wvacua in certain backgrounds

o (&, ,J-_\" = () If U(1)x present, X! must vanish.
o V;;! = 25, X' =-25,,X' Fixes phase of X/
o Fo! = —Zu X! — Zu X! Generalized attractor equation

Last result generalizes the standard BPS attractor equation
[Ferrara, Kallosh, Strominger '95; Ferrara, Kallosh '96]

Straightforward to generalize to non-abelian vector multiplets.
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(Abelian) vector multiplets

General rigid curved background (8 supercharges)

SUSY transformations are deformed

- I B y | - -1 -~ 7 B ab 3 S | s v ~1
()’\ttl — (I.ub L ‘zuh-\ L ‘Zub-\ )((7 ' E:.(: L (};J T .2.5,;.\ )E.;.l
— 21 ‘Du -\—l (U”S: .(: + 4z ("u t ] -\—I (‘U‘I‘SJ :’t!

This modifies the conditions for SUSY wvacua in certain backgrounds

o (&, ,J-_\" = () If U(1)x present, X/ must vanish.
o V;;! =25, ;X' =-25,, X' Fixes phase of X/
o Fo! = —Z. X! — Z.,. X! Generalized attractor equation

Last result generalizes the standard BPS attractor equation
[Ferrara, Kallosh, Strominger '95; Ferrara, Kallosh '96]

Straightforward to generalize to non-abelian vector multiplets.

Pirsa: 15090089 Page 50/59



The hypermultiplets \)

The Minkowski story

Hypermultiplet scalars: complex scalars A, B in conjugate reps

Interacting case generically described by sigma model with fields o™

@ Metric gasn describes hyperkahler target space manifold

e Three covariantly constant integrable complex structures (7;)"/

TJr1 Ty = =015+ Tk

= Description in extended harmonic projective superspace
e Fields »*! grouped into superfields Q depending on auxiliary S? with
coordinates u,; and u,

@ Harmonic case described by “Hamiltonian” H(Q. u; )

Projective version can be derived from harmonic.

Pirsa: 15090089

~N obeying

[Galperin, Ivanov, Ogievetsky, Sokatchev '88; Lindstrom, Roéek '08]

@ Projective (twistor) case described by “canonical transformation” F(Q. u, ).

[DB "12)

@ One can produce component actions using either. [DB 1410.3604, 1508.07718)

Page 51/59




The hypermultiplets

The Minkowski story

Hypermultiplet scalars: complex scalars A, B in conjugate reps

Interacting case generically described by sigma model with fields o™

e Metric gasn describes hyperkahler target space manifold

TJr Ty = =015 +crixIK

= Description in extended harmonic projective superspace
e Fields o grouped into superfields Q depending on auxiliary S? with
coordinates u,; and u,

@ Harmonic case described by “Hamiltonian” H(Q. u; )

Projective version can be derived from harmonic.

2 SUSY backgrounds and actions
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e Three covariantly constant integrable complex structures (7;)"! »~ obeying

[Galperin, Ivanov, Ogievetsky, Sokatchev '88; Lindstrom, Roéek '08]

@ Projective (twistor) case described by “canonical transformation” F(Q. u, ).

[DB "12)

@ One can produce component actions using either. [DB 1410.3604, 1508.07718)
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The hypermultiplets \)

General rigid curved background (8 supercharges)

Same basic procedure holds... except target space structure has additional requirements
inherited from R-symmetry in SUSY algebra.

SU(2) R-symmetry Target space
none arbitrary HK
SO(2)r HK with special K.V. that rotates 7;

SU(2) & hyperkahler cone (conformal K.V.)
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The hypermultiplets

General rigid curved background (8 supercharges)
Same basic procedure holds... except target space structure has additional requirements
inherited from R-symmetry in SUSY algebra.

SU(2) R-symmetry Target space

none arbitrary HK

SO(2)r HK with special K.V. that rotates 7;
SU(2)» hyperkahler cone (conformal K.V.)

= SUSY backgrounds and actions
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The hypermultiplets

General rigid curved background (8 supercharges)
Same basic procedure holds... except target space structure has additional requirements
inherited from R-symmetry in SUSY algebra.

SU(2) R-symmetry Target space

none arbitrary HK

SO(2)r HK with special K.V. that rotates 7;
SU(2)» hyperkahler cone (conformal K.V.)

@ T hese restrictions appear in harmonic / projective superspace because prepotential
# or F can only depend on S~ coordinates in certain ways.
The SO(2) i case was previously noted in AdS; and AdS5.
[DB, Kuzenko '11; Bagger, Xiong "11]
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The hypermultiplets o

General rigid curved background (8 supercharges)

Same basic procedure holds... except target space structure has additional requirements
inherited from R-symmetry in SUSY algebra.

SU(2) R-symmetry Target space

none arbitrary HK

SO(2)r HK with special K.V. that rotates 7;
SU(2)r hyperkahler cone (conformal K.V.)

@ T hese restrictions appear in harmonic / projective superspace because prepotential
# or F can only depend on S coordinates in certain ways.
The SO(2)ir case was previously noted in AdS; and AdS5.
[DB, Kuzenko '11; Bagger, Xiong "11]

@ New couplings present: e.g. G."” contributes B N F term

T p r) . AT . N
€ PIBomn'” Opd" g QarN i

=

@ Full SUSY configurations must obey:

e If SU(2)r present, scalars at origin of HK cone. (C.K.V. vanishes)
o If SO(2)r present, special K.V. parallel to any gauged isometries.
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Example: N

Choose diagonal metric grs = drs5 and adjoint hypermultiplet with scalars (A'. Br).
In Minkowski background, mass term m softly breaks NV = 4 to N = 2.

@ In a general rigid background, the Lagrangian is

- r *r: » - . rr - L~ - rrn - l - ~ab
L= —-D,.A;, D™ A D, .B' D™ B; D,.. XD X! :p,d,’p of
1 ) - ) . . )

—)1'.‘5! (Z°*" X! + Z°° " X' + Lpr + Lpor + fermions

Rigid W = SUSY backgrounds and actions
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Conclusions / Open questions

We have found all (global) rigid NV = 2 spaces and constructed general rigid actions for
vector and hypermultiplets. Some gaps / unanswered questions.

We assumed global manifolds, but what about discrete quotients? _
e.g. The B x S”’: one can quotient along /(1) fiber, giving a lens space .S'"/EZ,,-

Is there a dynamical origin of all rigid supersymmetric backgrounds?
Not for 4 supergravity + normal matter! [Hristov, Looyestijn, Vandoren '09]

But perhaps by compactifying higher dimensional theories. _ '
eg. D(2.1:«) from 6D theory with vacuum AdS, x §7 x S~
[Zarembo "10; Wulff "14]

Many spaces include trivial & factors, so reduction to Euclidean or Lorentzian 3D
N = 4 is clearly possible. What are the other 3D N =41 spaces?

We exploited coset structure to radically simplify analysis.
What about four supercharges for N =2 where this does not apply?

General compensator doesn’t seem to give new backgrounds for our case.

What about for four supercharges for NV =2 or two supercharges for N =17
see [Triendl 1509.02926]

Pirsa: 15090089 Page 58/59




Pirsa: 15090089

Thanks for your attention!

Rigid N 2 SUSY backgrounds and actions

Penmeter Institute
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