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Continuum limit of spin foam models
Tensor Renormalization Group algorithm
Algorithm for 3D constrained spin foam models

Discussion of the results

Work in progress
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Discretization of space-time:
= Breaking of diffeomorphism symmetry for 4D gravity theories

= Dependence of the path integral on the choice of triangulation

Continuum limit of the path integral

Achieving the continuum limit: construction of a cylindrical
consistent path integral w.r.t dynamical embedding maps

-
Discrete notion of symmetry restored < discretization independence
Approximation scheme: iterative coarse-graining procedure

= [terative improvement of the amplitudes

= Fixed points of coarse-graining flow enjoy enhanced symmetries
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Tensor network renormalization

O Iterative improvement of the amplitude via tensor network

coarse-graining schemes

2D tensor networks are widely used in Condensed Matter Theory
[ Nave 08 (TRG)||/Gu Wen 09||] ' Vida I'NR

Generalization to 3D: decorated tensor networks

= Lattice gauge theory with abelian groups

Modification of the algorithm to deal with gauge invariance with
non-abelian groups and implement simplicity constraints
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3D spin foam models

e 3+1—2+1
Simplifications , .
Lie groups — finite groups : S3. g-groups

Cubical regular lattice with 4-valent intertwiners

= Necessary for implementation of simplicity constraints

'l‘n}mluf;i(';l] BF model — H])ill foam models

Study of the fate of the simplicity constraints throughout the

coarse-graining procedure
Constraints extend the phase space of standard lattice gauge theories

— new fixed points, new phases?”

— new continuum representations
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Results with spin net models

O Spin nets = 2D analogues of spin foam models

O Spin net models display a very rich phase structure

O End points of the CG flow are encoded in different colors

O Phase = set of parameters for which the system flows towards a given
fixed point
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Embedding maps and vacuum

New fixed points — new topological field theories

[mproved amplitudes define the dynamical embedding maps
= New refinement limit

= New vaccum

= New representation of LQG

Organization of the theory w.r.t. different notions of excitations
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Embedding maps and vacuum

O New fixed points — new topological field theories

O Improved amplitudes define the dynamical embedding maps
= New refinement limif
= New vaccum
= New representation of LQG

O Organization of the theory w.r.t. different notions of excitations
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Parametrization (1/2)

O Partition function:

o 4

/= /Hr/q,]:[ufr;f with uf—Hq,

_f
O Fourier transformation (group rep. — spin rep.): wy(g) = Z,, we(p)xp(h)

Z = ZHW B (01} (1} 1m.)

Pt

Splitting of the Haar
projector :

( nm){:;,f, _Z{”"}’--H’c

LY

. We contract the
intertwiners ¢, associated
with a vertex v to a
vertex amplitude A,
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Parametrization (1/2)

O Splitting of the Haar

projector :

ye {nys} n
( Haar {mff} = Z{ 3 ’f'><’¢'|{m_lr}

L

€

O Haar projectors attached to the edges

ot IV(V,, ©..0V,,) 2 Tnv(V,, @ ..

o

W

Non-trivial invariant subspace

= Implementation of simplicity constraints:

I‘: projects onto V C I]l\.'(‘;,I X ...
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Tensor Renormalization Group

O I\’('ll(ll'lll:lli}’,:ltinll nl' a 2[,) tensor Il('T‘\\'n]'l{

= Factorization of each tensor using Singular Value Decompositions

‘/1 B — Z Il K ’\1\" ;I B — Z ( v.‘1 K \/’\ K) \//\1\" ';J\r' B )
N\ ® 7 \— —

K K

v] .2
S AK S KB

= Contraction of four isometries — new tensor
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Tensor Renormalization Group

O Renormalization of a 2D tensor network

= Factorization of each tensor using Singular Value Decompositions

,\[,”; = Z (Y‘,”\' ’\[\"'I;T[B — Z (( Y_‘H\' \/'\l\' ) ( \//\1\"';-[‘ ;3)
K : g

K

v [ .4-)
SAK SkB

= Contraction of four isometries — new tensor

NN\
v
NN
NN
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3D generalization of TRG

O TRG algorithm in each plane of the cubical lattice
= Splitting of the cubes into prisms via SVD

= Gluing of four prisms — new cube
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3D generalization of TRG

O TRG algorithm in each plane of the cubical lattice
= Splitting of the cubes into prisms via SVD

= Gluing of four prisms — new cube
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One iteration:

Translation invariance = we focus

on a single cube/tensor

Splitting of the cube along two

diagonals
= 4 prisms

The prisms are glued back

together

= New bigger shape

Rotation
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Spin network on the surface

O Change of perspective:

Bulk lattice gauge theory with tensor based vertices — amplitudes

associated to blocks

O Dual graph to the surface — Spin networks with three-valent vertices

0O Completely gauge invariant spin network

= variables on each edge
= non-local coupling rules

= [Loss of Gauss constraint
(!lll‘i]lf_’, t'lll}}('tlllillf_‘,’
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Gauge fixing

O Invariance under the gauge transformation
Ge — /-':(fl)‘f[, kiey, Ve € cube
O Spin networks on the surface — gauge-fixing via spanning tree

= L = F —V + 1 leaves in one-to-one correspondence with the cycles

0 Initial tensor:
9 l('él\'('-‘*;‘";\'ill'i«'l}‘I('H

O Residual gauge invariance : g. — k= Yg.k, Ve € cube

O The tree must be I)l'('r-i(‘l'\'(‘(] at each step
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Gauge fixing

O Invariance under the gauge transformation
1 ' : .
.(I! —>!..'~'(!]'q' ll!('.). \V/f e(”})(
O Spin networks on the surface — gauge-fixing via spanning tree

= L =F —V +1 leaves in one-to-one correspondence with the cycles

[0 Initial tensor:
9 leaves/variables

O Residual gauge invariance : g, — /.’_l_r;, k. Ve € cube

O The tree must be preserved at each step
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[ntegration over half edges

\IJ;,Im (f].f ) = / i”f‘]’[ f““ \IIH h)
G

Z / Jhl[’; (pL,mL.,n[L )\l’n(pn mR.N"R I)mf! np, (hgr)D ,,,H””(h}\/,-"IJ,.LJ,,”

{} m.n

Z: /{ f!h‘b]_[{’}_. myp,, nj, )\lf”{pn meg. n“)l)”;'l B {h}l);:fr-l (g1, )DLE Rn ”(h)v:"rf dop

{I).rn.n}
P

E Vilpomp.np)VWr(p,mp,nr)om [,m “.i},A,, ”I pnp (g91.)

p,{m,n}
I)

1 . , )0
Z (; T ‘]’ (p.m ., np)Vr(p, m .N_I{)) \/rf D npnj, (gr)

P, h!_l] f'

o

'

‘lfglun-:f"” R-mL)

Tensor formalism = contraction of indices
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O Splitting of the amplitude via singular value decomposition

. -t T
Map = Z( AKAK Vi ~ Sa151B
K

O Cutting of the 3 leaves shared by both sides

O Distribution of the magnetic indices provided by the SVD

= "super-index” K — (ml,nl,m2.n2.m3,n3)
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O Splitting of the amplitude via singular value decomposition

N[ GG
Map = E Uak Ak Vg ~ Sa151B
K
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HL q!
e

~
~

m q]
oo s

O Distribution of the magnetic indices provided by the SVD
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Map = z Uag AV g ~ Sa151B
K

O Key step of the approximation

— Truncation by keeping only the first set of singular values

O The maps U and V define a dynamical embedding mapping from

coarser to finer boundary graphs

O Cylindrical consistency w.r.t. to these embedding maps
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Map = z Uag AV g ~ Sa151B
K

O Key step of the approximation

— Truncation by keeping only the first set of singular values

O The maps U and V' define a dynamical embedding mapping from

coarser to finer boundary graphs

O Cylindrical consistency w.r.t. to these embedding maps

Pirsa: 15090084 Page 26/35



First splitting

Pirsa: 15090084 Page 27/35



Third gluing
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Rotation

0 We l)(‘l'fnl‘lll a rotation to coase grain in a ul‘[lm}_{nl];ll I)I;lll(-

O Tree transformation

= End of the first iteration < back to square one
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Parametrization (2/2)

O Implementation of constraints in the spin network picture

O Computation of the spin network amplitude:

S.\'\\"({y}~{ﬂ})=( I D’—m)( I1 \/’_) [1 (:sﬁ”)f.

(é[(-;l\'i':- ('El‘ll’_“t':\ vevertices

O BF amplitude : A({p}) = SNW(1, {p})

= In the group rep. : A({g}) = X, SNW({g}, {p})A({p})

O Parametrization: coefficients on the dimensional factors of the diagonal
edges ddiag- = (1.1.2) — (1., 2/3)
. P
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O Lattice gauge lJl('nl'_\'
fixed points:

e Ordered 83 phase

High temperature
limit

Disordered phase
with respect to the
normal subgroup

43

O Consistent with previous results
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Absence of additional phases near the phase transitions

Syminetric group too simple : only three representations

Lack of control over the distribution of the indices during the embedding

= Geometrical embedding

No explicit removal of the short-range correlations (cf TNR)
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Geometrical embedding

O The goal is to have more control over the embedding maps
O Redefinition of the variables as coarser and finer variables
= We keep the coarser variables and embed the finer ones

O Example in the case of an abelian lattice gauge theory:

k - : _ ky

Kfiner = kas. ka10
l"('uill‘.‘-'('l' — l"l + l"U- l"-’i + I"T
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Summary

O Algorithm for 3D lattice gauge theories with non-abelian groups

O Implementation of simplicity constraints

Outlook

O Symmetry protecting algorithm
O Alegorithm with geometrical embedding of the variables

O Implementation of cosmological constant via quantum groups SU(2)x

O 4D: Hypercubes (17 variables) or 4-simplices (6 variables)
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