Title: Efficient numerical methods for modern computing systems
Date: Sep 30, 2015 09:00 AM

URL.: http://pirsa.org/15090082

Abstract:

Pirsa: 15090082 Page 1/42

Pirsa: 15090082 Page 2/42

Efficient numerical
methods for modern
computing systems

Erik Schnetter
Renormalization in Background Independent Theories:
Foundations and Techniques

Perimeter Institute, September 30, 2015

Pirsa: 15090082 Page 3/42

Efficient numerical methods
for modern computing systems

High-level introduction to computational
methods

Computing architecture (“what is a
computer and how does it work”)

Numerical analysis (“how do | solve a
PDE on a computer”)

irsa: 15090082 Page 4/42

Algorithm Development

Naive idea:
Von Neumann (and others) developed a theoretical model of
computing

Take an algorithm (“constructive proof”), map it to this model,
implement it in a computer language, done

In practice:

What is possible (and what is efficient) is not determined by an
abstract model, but by current-day hardware technology

“Good” algorithms today look very different than 20 years ago
(... not because people today are more clever!)

Pirsa: 15090082 Page 5/42

Memory

|

|

Control
Unit

Arithmetic
— Logic
. Unit

Accumulator

AN

irsa: 15090082

RN

Input

Output

Von Neumann Architecture

Sequential
Execution:

X:=a+b

1. read
instruction
read a
read b
add

write x

s WN

[Wikipedia]

Page 6/42

Pirsa: 15090082 Page 7/42

Branch | Instruction
Predictors Fetch Unit

Haswell ume | 32KB L1 FC:cmtaway) M Odern

168™
L

(1t:::::¢:f§&tch8uffer) Intel
- processor

ucode Cor;pleﬂ [Slmple [Slrnple [s|mp|._

A 4

(2x20 Instruction Queue

Decoder) (Decoder) |Decoder) |Decoder,
4 |m|>\\1\ 1 ;1:);]""‘.\ 1 lltapl\\ 1 ||up""..\
[1.5!(wop Cache (8 myﬂ—/—-[56 pop Decode Queue]
4 pops
3128 4 pops

(192 Entry Reorder Buffer (RoB))
I

{ i 4 }
168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
Registers Registers Order Buffer Load Buffer Store Buffer
(60 Entry Unified Scheduler]
Port 0 Port | Port 5 Port 6| Port 2 Port 3 JPort 4 |Port 7
L 2 ‘
ALU ALU 256-bit
Branch @ LA [framtLn
Shift MUL
256-bit] (256-bit “DF 2012]
FMA FMA
FBlend FADD 2x32B

A

Pirsa: 15090082 Page 8/42

Branch Instruction
Predictors Fetch Unit
r |
Haswell L1 rrLBI 32KB L1 I-Cache (8 way)

\
ma\l\

(16B Predecode, Fetch Buffer

)
6 Instructlons\k
(2x20 Instruction Queue]

oUs Complex] | Simple | [Simple || Simple
5 Decoder) | Decoder) |Decoder) | Decoder
| l 4 uops‘:;\ 1 uop$ 1 pop\l\ 1 uop$

[1.5K pop Cache (8 wayH 56 pop Dec_ode Queue J
)

4
o o
(192 Entry Reorder Buffer (ROB)

]
i 1l 1 1l 1

Pirsa: 15090082 Page 9/42

Pirsa: 15090082

A N N 7 N v
l | 4uops™\ 1 pop$ 1 pop\l\ 1 p0p$
A

(1.5!(pop Cache (8 way;+4

56 pop Decode Queue

4 pops
328

4 uops\l\

192 Entry Reorder Buffer (ROB)

[168 Integer

Registers

J(

168 AVX
Registers

J(

8 Entry Branc

Order Buffer

)

72 Entry
Load Buffer

J

42 Entry
Store Buffer

!

!

!

!

60 Entry Unified Scheduler

— N

Port 0 Port 1 Port 5 Port 6
ALU 256-bit
Branch Fa‘:t"l‘_JE A] VALU
Shift VShuffle

256-bit
FMA
FBlend

256-bit
VALU
VBlend

256-bit
FShuffle
FBlend

ALU

Branch

Shift

Port 2

Port 3 |Port 4

Page 10/42

Pirsa: 15090082

Sequential vs. Parallel

Modern CPUs are highly parallel
Many cores (20)
Each core is superscalar (10...100)
Vector (“SIMD”) operations (4)
FMA (a*b+c) (2)

Algorithms need to be parallel (many independent steps), not
sequential (each step depending on the previous)

Bad: Update a structure element-by-element

Good: Create a new structure from an existing one

Page 11/42

[edwardbosworth.com |

Pirsa: 15090082 Page 12/42

Pirsa: 15090082 Page 13/42

Performance Measures

Theoretical Peak Performance
Computing: Floating point operations per second (Flop/sec)

Data access: Bytes per second (Byte/s)

Typical numbers for a modern workstation:
1,000 GFlop/sec (Giga, 10°)
100 GByte/sec
Ratio: 0.1 Byte/Flop

Memory (RAM): 100 GByte

Pirsa: 15090082 Page 14/42

Algorithm characteristics

Algorithms can be characterized by the number of calculations they
perform (Flop) and amount of data they process (Byte)

Matrix multiplication (n*n matrices, 8 Byte per number):
2n° Flop
24n? Byte
12/n Byte/Flop
Thus: compute bound even for moderate n

Matrix addition:
n? Flop
24n? Byte
Ratio: 24 Byte/Flop
Thus: memory bound

Pirsa: 15090082 Page 15/42

Pirsa: 15090082

Supercomputer architecture

c e Card

VO Card

FRU (field
replaceable unit)
25mmx32mm
2 nodes (4 CPUs)

npare this with a 1988 (2x1x1)
Cray YMP/8 at 2.7 GFls) 2x(2.8/5.6) GF/s
2x512 MiB* DDR
15W

2 processors
2.8/56 GF/s
4 MiB* eDRAM

Node Card

16 compute cards

0-2 1/0 cards
32 nodes
(64 CPUs)
(4x4x%2)
90180 GF/s
16 GiB* DDR

[———
[3
L
[2
"
[2
(2
P,
..
L~ -~
=
e

v

Cabinet

2 midplanes
1024 nodes
(2,048 CPUs)
(8x8x16)
2.9/57 TFls
512 GiB* DDR
15-20 KW

system 65 536 nodes

64 cabinets
! 65,536 nodes
72 =18
(32x32x64)
1801360 TF/s
a2mne*
1.2 MW
2,500 sq.tt.
MTBF 6.16 Days

Page 16/42

Supercomputer?

Pirsa: 15090082 Page 17/42

Pirsa: 15090082

Performance

Top500

Performance Development

10 EF/s
1 EF/s

100 PF/s / Al
10 PF/s A
1 PF/s =
d FYYvwy
100 TF/s / A
10 TF/s "’ “An
1 TF/s ¥ ah AN

st
100 GF/s g

10 GF/s
1 GF/:
100 MF/s
1995 2000 2005 2010 2015
Lists

4 Sum A W #500

[top500.0rg]

Page 18/42

Distributed Memory

[computing.linl.gov]
network

Need to partition data structures

Need to exchange information at (artificial) inter-node
boundaries

Permeates the whole program, quite difficult in practice

Pirsa: 15090082 Page 19/42

Software Architecture

Every decade or two, there is a paradigm shift in
software architecture

1980s: modular programming (“information hiding” /
programs form a group)

1990s: object oriented programming
2000s: parallel programming (multi-threading)
2010s: (?) functional (declarative) programming

Pirsa: 15090082 Page 20/42

Software Architecture

Every decade or two, there is a paradigm shift in
software architecture

1980s: modular programming (“information hiding” /
programs form a group)

1990s: object oriented programming
2000s: parallel programming (multi-threading)
2010s: (?) functional (declarative) programming

Pirsa: 15090082 Page 21/42

Parallel Programming Algebra

Problems: Access conflicts, deadlocks

Naively parallel programs do not form a group

Relatively recent solution, found today e.g. in C++, Python:

Future: “black box” holding the result of a calculation that is not
yet finished

Accessing a future automatically waits until the result is ready

Async: (asynchronous execution): “function call” returning a
future, without waiting for the result

C++: Future is a “container” (or could be)

Category theory: Future is a monad

Pirsa: 15090082 Page 22/42

Pirsa: 15090082

Functional Programming

Dichotomy between mathematics and programming:
Math is about eternal truths (there is no “time” in a proof)
Programs execute sequentially

How can one prove statements about programs?

(1990s: Programs are monads...)

Functional programming:
Design programs to be order-independent (as much as possible)
Remove distinction between data and functions

letx=1 let f = sin
in sin(x) in f(1)

Page 23/42

Pirsa: 15090082

Functional Programming

Dichotomy between mathematics and programming:
Math is about eternal truths (there is no “time” in a proof)
Programs execute sequentially

How can one prove statements about programs?

(1990s: Programs are monads...)

Functional programming:
Design programs to be order-independent (as much as possible)
Remove distinction between data and functions

letx=1 let f = sin
in sin(x) in f(1)

Page 24/42

Pirsa: 15090082

Functional Programming

Dichotomy between mathematics and programming:
Math is about eternal truths (there is no “time” in a proof)
Programs execute sequentially

How can one prove statements about programs?

(1990s: Programs are monads...)

Functional programming:
Design programs to be order-independent (as much as possible)
Remove distinction between data and functions

letx=1 let f = sin
in sin(x) in f(1)

Page 25/42

Programming Languages

For non-trivial projects, need these properties from a
programming language:
Dynamic user interface (e.g. Mathematica’s notebooks)

Modularity (collaborative programming), i.e. safety features,
abstractions (C++)

High efficiency where needed (e.g. matrix multiplication)

There are many languages (Fortran, C++, Python, Matlab,
Mathematica, ...)

Few languages offer all features; most projects use multiple
languages

Pirsa: 15090082 Page 26/42

Programming Languages

For non-trivial projects, need these properties from a
programming language:
Dynamic user interface (e.g. Mathematica’s notebooks)

Modularity (collaborative programming), i.e. safety features,
abstractions (C++)

High efficiency where needed (e.g. matrix multiplication)

There are many languages (Fortran, C++, Python, Matlab,
Mathematica, ...)

Few languages offer all features; most projects use multiple
languages

Pirsa: 15090082 Page 27/42

O I. O
high-level, high-performance dynamic programming language for
technical computing

From juliacode.org:

sophisticated compiler

distributed parallel execution
numerical accuracy

extensive mathematical function library

mature, best-of-breed open source C and Fortran libraries for
linear algebra, random number generation, ...

powerful browser-based graphical notebook interface

But: only few years old, still immature

Pirsa: 15090082 Page 28/42

Pirsa: 15090082

Numerical Analysis

How to solve a PDE on a computer

How to approximate fields via finite-dimensional spaces:
discretization

Obvious superficial similarities between discretization and
quantization

Can some interesting ideas be transferred?

Page 29/42

Pirsa: 15090082

PDE Discretization

Given: A PDE L, acting on a set of fields U:
L(U) =0

Choose a sequence of bases B, for U
Different resolutions, indexed by n
Choose discrete approximate operators L,
Yes, this is a choice
Solve L,(U,) = O for several n
Extrapolate to find U (Richardson extrapolation)

Page 30/42

Discretization

[wissrech.iam.uni-bonn.de]

=

— |

B S

i 1+D_H L LJ,MH“““I
[

JaEEEEEEEE
L EEfT G EEEEEEEE
._ s AsEEEEEEEEEEEEE
O UGN ENEEEERE

Pirsa: 15090082

Common Discretization
Methods

Finite Differences:
Sample solution at grid points, interpolate to define continuum
Finite Elements:

Define elements with vertices, edges, faces, ...; often used with
differential forms

Finite Volumes:

Split domain into cells; define fluxes through faces; commonly
used for conservation laws

Particle methods (Lagrangian methods):

Split matter/charges into “particles” that move and interact with
neighbours; often used for conserved quantities with irregular
distributions

Page 32/42

Pirsa: 15090082

Common Discretization
Methods

Finite Differences:
Sample solution at grid points, interpolate to define continuum
Finite Elements:

Define elements with vertices, edges, faces, ...; often used with
differential forms

Finite Volumes:

Split domain into cells; define fluxes through faces; commonly
used for conservation laws

Particle methods (Lagrangian methods):

Split matter/charges into “particles” that move and interact with
neighbours; often used for conserved quantities with irregular
distributions

Page 33/42

Pirsa: 15090082

Common Discretization
Methods

Finite Differences:
Sample solution at grid points, interpolate to define continuum
Finite Elements:

Define elements with vertices, edges, faces, ...; often used with
differential forms

Finite Volumes:

Split domain into cells; define fluxes through faces; commonly
used for conservation laws

Particle methods (Lagrangian methods):

Split matter/charges into “particles” that move and interact with
neighbours; often used for conserved quantities with irregular
distributions

Page 34/42

Mimetic Discretizations

Some continuum properties may/will not hold in the discrete,
e.g.:

Conservation

Integration by parts

Constraints

Sharp discontinuities
Typically: Need to choose which properties are important for
a system, represent these faithfully (“mimetic”), drop others

E.g. integration by parts: can be recovered by careful choice of
derivative operators, integration weights, boundary definition

Pirsa: 15090082 Page 35/42

Mimetic Discretizations

Some continuum properties may/will not hold in the discrete,
e.g.:

Conservation

Integration by parts

Constraints

Sharp discontinuities
Typically: Need to choose which properties are important for
a system, represent these faithfully (“mimetic”), drop others

E.g. integration by parts: can be recovered by careful choice of
derivative operators, integration weights, boundary definition

Pirsa: 15090082 Page 36/42

Hierarchical Basis Finite Differencing

———

- * -

(a) 'b)

[www.nap.edu]

Pirsa: 15090082 Page 37/42

Sparse grids Can represent

D-dimensional domain
Adapt grid to PDE with O(2° N) coefficients

L]
' .
o £
R
VAR,
1 !
ry T T
F) . l". I.' " v
1 l" i ‘!.'.
.'" . gt
L F ! d iy ".:‘ y
" L] L] "P 4 !
r I’ ’
bl . v f' e
¥ y r
s & ¢
(=1]
1 .|I lr , "'Jr ol ¥
Bp - 4 ' & i
ar . ".f LE
A) 4
bow oy ~
f." L L]
] J
T — I’.o'
LT \,“ - T — T — f eee
] Y — J
; * LE LaX | |g' 7 _+| e
’ L a4
ek

[wissrech.iam.uni-bonn.de]

Pirsa: 15090082 Page 38/42

Sparse grids Can represent

D-dimensional domain
Adapt grid to PDE with O(2° N) coefficients

L]
' .
o £
R
VAR,
1 !
ry T T
F) . l". I.' " v
1 l" i ‘!.'.
.'" . gt
L F ! d iy ".:‘ y
" L] L] "P 4 !
r I’ ’
bl . v f' e
¥ y r
s & ¢
(=1]
1 .|I lr , "'Jr ol ¥
Bp - 4 ' & i
ar . ".f LE
A) 4
bow oy ~
f." L L]
] J
T — I’.o'
LT \,“ - T — T — f eee
] Y — J
; * LE LaX | |g' 7 _+| e
’ L a4
ek

[wissrech.iam.uni-bonn.de]

Pirsa: 15090082 Page 39/42

Adaptive Mesh Refinement

Dynamically adapt mesh to solution U

b4
B
b
3 E
= |
H
HH +t
- 1t
o
HH HHE
i & H 11t 41
HH 22 HH HH HH
HH 11t 3238
11 HH : 1 1
- t3 1T LIt 13
=+t - - -
3 LLLL]L
L

[jupiter.ethz.ch]

Pirsa: 15090082 Page 40/42

Pirsa:

15090082

Multigrid Methods

. CAB L BT L BT AV T AV L VB P S ER LT APS TS T
L T S e o s et At i
. A . . .
- . PR S M ——
L . p
;- ‘-.) T S S S S S S S S S
E - - - - - - - - . - - - - -
] - 7 A N A T < < S S A S S —
T ala 4 - . .
r - - - - - -
- -
T - - - - -
N f
- #
L r . - - - - - -
r
- L] B
|
- .
[< b
-

»
|}
e - L
1 - - -
-
t .
A »
s 2
A ’
L

[mgnet.org]

1313

Page 41/42

Pirsa: 15090082

Summary

Efficiency of algorithms depends on available computing
architecture

Parallelism (independent operations, not sequential)
Data locality (operate on “neighbouring” data)

Large problems require distributed memory
Partition data structure

Modern software engineering:

Powerful concepts from group theory, category theory, e.g.

future, async

Page 42/42

