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Efficient numerical methods
for modern computing systems

High-level introduction to computational
methods

Computing architecture (“what is a
computer and how does it work”)

Numerical analysis (“how do | solve a
PDE on a computer”)
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Algorithm Development

Naive idea:
Von Neumann (and others) developed a theoretical model of
computing

Take an algorithm (“constructive proof”), map it to this model,
implement it in a computer language, done

In practice:

What is possible (and what is efficient) is not determined by an
abstract model, but by current-day hardware technology

“Good” algorithms today look very different than 20 years ago
(... not because people today are more clever!)
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Sequential vs. Parallel

Modern CPUs are highly parallel
Many cores (20)
Each core is superscalar (10...100)
Vector (“SIMD”) operations (4)
FMA (a*b+c) (2)

Algorithms need to be parallel (many independent steps), not
sequential (each step depending on the previous)

Bad: Update a structure element-by-element

Good: Create a new structure from an existing one
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Performance Measures

Theoretical Peak Performance
Computing: Floating point operations per second (Flop/sec)

Data access: Bytes per second (Byte/s)

Typical numbers for a modern workstation:
1,000 GFlop/sec (Giga, 10°)
100 GByte/sec
Ratio: 0.1 Byte/Flop

Memory (RAM): 100 GByte
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Algorithm characteristics

Algorithms can be characterized by the number of calculations they
perform (Flop) and amount of data they process (Byte)

Matrix multiplication (n*n matrices, 8 Byte per number):
2n° Flop
24n? Byte
12/n Byte/Flop
Thus: compute bound even for moderate n

Matrix addition:
n? Flop
24n? Byte
Ratio: 24 Byte/Flop
Thus: memory bound
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Supercomputer architecture
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Supercomputer?
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Distributed Memory

[computing.linl.gov]
network

Need to partition data structures

Need to exchange information at (artificial) inter-node
boundaries

Permeates the whole program, quite difficult in practice
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Software Architecture

Every decade or two, there is a paradigm shift in
software architecture

1980s: modular programming (“information hiding” /
programs form a group)

1990s: object oriented programming
2000s: parallel programming (multi-threading)
2010s: (?) functional (declarative) programming
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Parallel Programming Algebra

Problems: Access conflicts, deadlocks

Naively parallel programs do not form a group

Relatively recent solution, found today e.g. in C++, Python:

Future: “black box” holding the result of a calculation that is not
yet finished

Accessing a future automatically waits until the result is ready

Async: (asynchronous execution): “function call” returning a
future, without waiting for the result

C++: Future is a “container” (or could be)

Category theory: Future is a monad
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Functional Programming

Dichotomy between mathematics and programming:
Math is about eternal truths (there is no “time” in a proof)
Programs execute sequentially

How can one prove statements about programs?

(1990s: Programs are monads...)

Functional programming:
Design programs to be order-independent (as much as possible)
Remove distinction between data and functions

letx=1 let f = sin
in sin(x) in f(1)
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Programming Languages

For non-trivial projects, need these properties from a
programming language:
Dynamic user interface (e.g. Mathematica’s notebooks)

Modularity (collaborative programming), i.e. safety features,
abstractions (C++)

High efficiency where needed (e.g. matrix multiplication)

There are many languages (Fortran, C++, Python, Matlab,
Mathematica, ...)

Few languages offer all features; most projects use multiple
languages
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O I. O
high-level, high-performance dynamic programming language for
technical computing

From juliacode.org:

sophisticated compiler

distributed parallel execution
numerical accuracy

extensive mathematical function library

mature, best-of-breed open source C and Fortran libraries for
linear algebra, random number generation, ...

powerful browser-based graphical notebook interface

But: only few years old, still immature
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Numerical Analysis

How to solve a PDE on a computer

How to approximate fields via finite-dimensional spaces:
discretization

Obvious superficial similarities between discretization and
quantization

Can some interesting ideas be transferred?
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PDE Discretization

Given: A PDE L, acting on a set of fields U:
L(U) =0

Choose a sequence of bases B, for U
Different resolutions, indexed by n
Choose discrete approximate operators L,
Yes, this is a choice
Solve L,(U,) = O for several n
Extrapolate to find U (Richardson extrapolation)
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Discretization

[wissrech.iam.uni-bonn.de]
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Common Discretization
Methods

Finite Differences:
Sample solution at grid points, interpolate to define continuum
Finite Elements:

Define elements with vertices, edges, faces, ...; often used with
differential forms

Finite Volumes:

Split domain into cells; define fluxes through faces; commonly
used for conservation laws

Particle methods (Lagrangian methods):

Split matter/charges into “particles” that move and interact with
neighbours; often used for conserved quantities with irregular
distributions
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Mimetic Discretizations

Some continuum properties may/will not hold in the discrete,
e.g.:

Conservation

Integration by parts

Constraints

Sharp discontinuities
Typically: Need to choose which properties are important for
a system, represent these faithfully (“mimetic”), drop others

E.g. integration by parts: can be recovered by careful choice of
derivative operators, integration weights, boundary definition
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Hierarchical Basis Finite Differencing

———
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(a) 'b)

[www.nap.edu]
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Sparse grids Can represent

D-dimensional domain
Adapt grid to PDE with O(2° N) coefficients
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Adaptive Mesh Refinement

Dynamically adapt mesh to solution U

b4
B
b
3 E
= |
H
HH +t
- 1t
o
HH HHE
i & H 11t 41
HH 22 HH HH HH
HH 11t 3238
11 HH : 1 1
- t3 1T LIt 13
=+t - - -
3 LLLL]L
L

[jupiter.ethz.ch]

Pirsa: 15090082 Page 40/42



Pirsa:

15090082

Multigrid Methods
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Summary

Efficiency of algorithms depends on available computing
architecture

Parallelism (independent operations, not sequential)
Data locality (operate on “neighbouring” data)

Large problems require distributed memory
Partition data structure

Modern software engineering:

Powerful concepts from group theory, category theory, e.g.

future, async
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