Title: Observable currents for effective field theories and their context

Date: Sep 29, 2015 02:00 PM

URL: http://pirsa.org/15090081

Abstract: The primary objective of an effective field theory is modelling observables at the given scale. The subject of this talk is a notion of
observable at agiven scale in a context that does not rely on a metric background.

Within a geometrical formalism for local covariant effective field theories, a discrete version of the multisymplectic approach to lagrangian field
theory, | introduce the notion of observable current. The pair of an observable current and a codimension one surface (f, \Sigma) yields an
observable Q {f, \Sigma} : Histories \to R . The defining property of observable currents is that if \phi \in Solutions \subset Histories and
\Sigma&€™ - \Sigma = \partial B (for some region B) then Q _{f, \Sigma} (\phi) = Q _{f, \Sigma} (\phi) . Thus, an observable current f is a local
object which may use an ““auxiliary devised€™&E™ \Sigma, relevant only up to homology, to induce functions on the space of solutions.

There is a Poisson bracket that makes the space of observable currents a Lie algebra. We construct observable currents and prove that solutions can
be separated by evaluating the induced functions.

We comment on the relevance of this framework for covariant loop quantization.
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Field theories - for a large class of systems —
GBFT: covariant, local
(spacetime M differentiable manifold, not necessarily metric)

Effective Field Theory (EFT) at a given scale
{EFTSciScalesin iy — EFTwm

Construct EFTg. as the limit of a correction procedure

EFTSC E= SCljéilM CorrFTSc o)

where CorrFT(dSc (Sc')) = RG’(PrimeFT(,.-‘)’SC'))

Key concepts:
Scale, coarse graining, EFTg. , observables, GBFT
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A history ¢ is a local section of Y — M.

In a lagrangian formulation, L = L(z, ¢, D¢), we need
Partial Observables that talk about J'Y 3 (z,¢, D).

Measuring scale «— discrete collection of measuring devises

A scale is a faithful structure of local subalgebras:
to every open set U C M corresponds a subalgebra

POA(U) ~ C®°(x~'U,R or C) C POy

such that {Eval,_: POA(U,) — R or C} .~ determines:
(i) the bundle Y —— M up to equivalence

(ii) each ¢, € I'(Y) up to “microscopical details” (homotopy
relative to Eval)

A notion of kth order agreement of sections leads to J* Yo

Page 3/26




A’ > A means that there is a coarse graining map
cg consisting of an assignment of a a homomorphism cg( U) to
every open set U C M

POA(U) 2% POA/(U)
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Topological motivation:
In discrete approaches to GR, like Regge calculus, we rely on the

fact that spacetime’s topology can be stored in the discrete
structure of a triangulation.

Similarly, the bundle structure of the space where histories live,
J1Y, should be storable in a discrete manner.

Topological implications of this definition of scale:

“/A-microscopical” variations of a A-history do not tear

A classical variational problem in a given bundle at scale A
makes sense

Coarse graining from scale A’ > A by summing over

A-indistinguishable histories is a sum over histories in a well
defined bundle
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Scale defined with the aide of a triangulation, M — (M, A)

21
z 5 ito(z) = (z, ¢, Dp) decimated to

v r(—j> (;7')(1/) = (z(Cv), ¢y € F,{z(CT),dr € F}rcov) Or

R : :
v P(—)' O(L’) — (V, Qy € f, {C)T S f}TC(’)u)
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Scale defined with the aide of a triangulation, M — (M, A)

21
z 25 ito(z) = (z, ¢, Dp) decimated to

v+ ¢(v) = (2(Cv), ¢y € F,{2(C7),¢r € F}rcav) or
v §(v) = (v, ¢ € F,{¢r € F}rcar)
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A family of local sections to local trivializations
{(."")n : U, = U, X G}U,,CM
determines the transition functions g.3(z) = (ga(z)) ' g3(2)

Decimated local sections give partial information about the
transition functions

174 |i>‘ (.’I:(CI/),.(]_U E G:{:I;(CT”._I),‘(]TH | e G}Tn lc((‘)u)n g
{.’I.‘(CT“), g-0 € G}T”C((')b‘)”:
W = { h. type of (¢, ' ¢r)|r}rcon)

determines the bundle up to equivalence
and the history up to homotopy
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A connection on a G-bundle determines a holonomy homom.
Hpy:Lip — G

A homom. H satisfying certain smoothness conditions determines
(i) a principal bundle (up to equivalence) and
(ii) a connection up to gauge [Barrett 1991]

A decimated parallel transport (semigroup) homom.

=

(z(CV), {h € Glicy; {z(CT™ 1), {k.._, € G}, cpn-1}n 1C(u)n—1;

3 {z(CT?) }roca0y0; W = { h. type of gluing v and 7 loc. triv. }rcay)

determines a principal bundle (up to equivalence)

and a connection up to homotopy and gauge [“Local gauge theory
and coarse graining”, Z. 2011]
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The first order effective field bundle, J' Y\,
is a finite dimensional manifold
(with the str. of a fiber bundle over a simplicial complex)

Local objects are defined on J! Y,

Histories are local sections, among them we have
“solutions”

Geometric structure emerges as relations among local
objects that hold when evaluated on “solutions”

Pirsa: 15090081 Page 11/26




Decimated local record of a history in 1st order format

v+ $(v) = (1,60 € F, {6+ € Fhrcan)

A variation 6¢(v) = H(v) = (v, € To. F,{vr € Ty, F }rcav)

Notation: (M, A), vely, 7€ (UU)K_l. or T € Ug—l’
o(v) € J'Ya, ¢€Histsy, b€ T;Histsy, or v € X(J'YAlv)
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O (o(v), @(v), (7)) = — (O, (W(v), D))

assigns (pre)symplectic structures to spaces of data over
codimension 1 domains ¥ +— ()y

Q. 2(7, 1) = E o ipix L

LR

i

E.g. scalar field & spacelike Qy, ;(9, @) = 2E Yy, dopy, A dop- (0, )

Given any b € Solsy, v, € T(SS()lSU and Il & U/
the multisymplectic formula holds:

Y ¢ iginL =0
ouU’

Proof. : )
— _(Z(ZS = —d(z(')(j d)* (_)L) — ZHU G)* SZL
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Consider ¢ € Solsy;.
First variations of ¢ are elements of 7';Sols;; C T;Histsy, and

may be induced by vector fields on J! Ya.

They are characterized by satisfying L;E; =0
(Recall dS(d) =X y_su9* EL+ Yy ¢* OL)

They define a lagrangian! subspace of Qo g forall U c U
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F € OCy iff it is an n-1 cochain on J! Y, st- V & € Solsy
F(é(1,)) = F(,¢r,¢0,) = —F(d(1)) = F(—7, ¢r, 1),

o B e

aou’

Qrs(9) => ¢" F
)3

Notice that if ¥’ is homologous to ¥ and ¢ € Solsy
QF.::’((E’) e QI".‘;I((.«;) o (21«‘.1:’—2(‘??)) e QI“-f'N-f’((E’) =0

Notice that OC is a vector space.

i Sigma models and gauge theory also available
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F € OCy iff it is an n-1 cochain on J' Y, st- V ¢ € Solsy
F(é(1,)) = F(, ¢r,0,) = —F(d(1)) = F(—T, br, 1),

Mo E=—0 Wil

ou’

Qrs(d) =D ¢" F
)3

Notice that if ¥’ is homologous to ¥ and ¢ € Solsy
Qrs(0) — Qrx(d) = Qry—x(0) = Qrav/(d) =0

Notice that OC; is a vector space.

i Sigma models and gauge theory also available
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Consider a curve of solutions y(s) € Sols; with

7(0) = ¢ € Solsy, #(0) =€ T;Solsy.

**1s OCy large enough to resolve 7';Solsy? **
(Qr.x, separates ¢ from nearby solutions in 7 if

d - y
—ls=0Qr.2(v(s)) = 3 ¢" dF[w] # 0

L )

<4

If the observable current has an associated hamiltonian vector field
dF = —3$);,

(let us call such an OC a hamiltonian OC, F € HOCy)
the separability condition reads

Y ¢ igisQs # 0.

A

ed
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Assume (1}, is non degenerate. Then for any ¢ € Solsy there
is a hamiltonian OC F that can be used to separate ¢ from
any neighboring solution.

Sketch of proof.

Given any non constant curve y(s) € Sols; as above,

(2, nondeg. = dvand T C U -st-

QL (v, @ = 4(0), (7)) # 0. Construct F from 7.

Assume (1, satisfies a non deg. condition. Then for any
¢ € Solsy there is F' € HOC, that separates ¢ from any
neighboring solution measuring at > C 9U.

Sketch of proof.

SZL nondeg. = Jvand ¥’ C U with 0¥’ C U st
ds s=0Qr 5 (7 ( )) o T ZL ¢* 15982 # 0.

F may be measured at ¥ C 90U st- ¥ — X =0U".
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We will investigate the space of hamiltonian observable currents.

If — 138, = dF

¥ is said to be a hamiltonian vector field for F'.
vV E Ha.(.fl YA|U) c I(]l YA|[;) and ' € HOCy Cc OCy.

If —4;€0; = o5 with

doy =0 and Y ¢ izoz =0

75 Ui

for all U’ c U and (w, ¢) € TSolsy,
v is said to be a locally hamiltonian vector field.

vV E LHEI.(-]I YA|(}) @ %(.]1 YA|U)-
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doy =0 e
Y @ igoy=0 YU, —
ou’

Z o igoy =0 VU’, w —
al’

All evaluated at a ¢ € Sols.

Notice that if £;€2;, = 0 holds at 3,
the multisymplectic formula implies that it also holds at any
Y =Y 4+0U" if L;E; = 0 holds inside U’.

The bulk condition is L3;E;, =0 (i.e. ¥ € T;Solsy)

i If T;Solsy defines a lagrangian subspace of €2, ; for all U’ C U

D
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Some closed 1-forms may be integrated, revealing that they
are exact. This is the subject of the next slide.

LHa(J' Ya|y) D Ha(J' Ya|v)

J

If Q.(-,-;0(7,)) is non degenerate V7, € U

0=
e Ha(.]l Ya|v)

This contrasts with Multisymplectic Field Theory in the continuum,
where the n+1 form €2; is not invertible.

The situation is closer to initial data formulations of field theory
where the symplectic form is invertible.

The difference arises from the fact that in the discrete setting there
is a predetermined set of codimension 1 faces on which €2; may be
evaluated to induce a (collection of) 2 forms.
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v € LHa(J! Ya|y) induces o3,

integration on the fibers may lead to Fj x € OCy.
Integration requires the choice of

a system of integration constants K;

an allowed choice of integration constants implies

Y ¢*Fox=0 VéeSolsy, U'CU
o’

Adding a closed n-1 cochain C'in U to a system of allowed

integration constants K yields a new system of allowed integration
constants K' = K + C.

F; k € OCyp and its physical meaning are determined by v and K.

OCy is in correspondence with T'Solsy;
when 27, is non deg. the corresp. is roughly 1 to 1
making OCs capable of separating neighboring solutions.

Page 23/26




Pirsa: 15090081

Given two observable currents Fj ¢, Gz € OCyp
their Poisson bracket is another observable current

{FF!.K- Gﬁ!.L}((e‘;(Tu)) — SZL(‘&}-. v, (;(Tu))

whose hamiltonian vector field is [v, w].

Recall 2, = —d©p and dS|gq1s = 2 sy ©OL
Then {F, -} is related to the variation of a solution ¢ induced by
Su(¢) = Sua(@) = S(9) + A gy Fo.

Similar considerations for bulk obs. lead to Peierls’ bracket.
Peierls’ bracket defines an equivalence relation among bulk obs.
Using our bracket, the equivalence relation extends to bdary obs.
In fact, bdary obs. may be used to label equiv. classes of bulk obs.
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The concepts of:

scale,

coarse graining,

field theory (at a given scale) and

observable currents (at a given scale)

were studied in the GBFT spirit for classical theories

A path integral quantization takes these concepts to quantum
GBFT — spin foam models —. There are some caveats:
For theories with gauge symmetries €1, is degenerate
derived structures like measures, inner products, etc do have a
kernel
(if an appropriate quotient is taken nondegeneracy is restored)
Observable currents in general lead to

(A);"_g - Q;«*_gf + i?;«*_y forX — Y =0B

(the classical property holds only when eval. on solutions)
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