Title: Cosmology with Goldstone bosons

Date: Sep 22, 2015 01:00 PM

URL: http://pirsa.org/15090074

Abstract: I will discuss the appeal of pseudo-Goldstone bosons (pGBs) for the generation of scales in Early Universe cosmology. In particular, I will demonstrate how in Goldstone Inflation a pGB inflaton can solve the hierarchy problem of inflation (the tension between the Lyth bound and the inflationary scale as preferred by CMB anisotropies), while avoiding the problems with trans-Planckian scales that are typically associated with related models. A simple model based on the coset SU(4)/Sp(4) realises both the Higgs doublet and an inflaton singlet as Goldstone modes. A single setup can then give rise to Goldstone Inflation and the dynamical generation of the electroweak scale through a composite Higgs, thus also addressing the EW hierarchy problem. I will discuss perturbative reheating in this model, and show how it naturally connects to both EW physics and a UV completion. If time permits I will address our current studies on non-perturbative reheating and the possibility of electroweak baryogenesis in this setup.

Pirsa: 15090074 Page 1/37

Pirsa: 15090074 Page 2/37

Happy to be here!

Pirsa: 15090074 Page 3/37

What I'll talk about

- Two hierarchy problems: EW, inflation
- Pseudo Goldstone bosons (pGBs) address these
 - Goldstone Inflation¹
 - Composite Higgs models²
- DC, Sanz, Setford [arXiv: 1411.7809]
 Gripaios, Pomarol, Riva, Serra [arXiv:

0902.1483

- Realizing both solutions in one model and meeting CMB and collider constraints
 - Deriving the scalar potential
 - Inflation in this model
 - Perturbative reheating in this model

3

Pirsa: 15090074 Page 4/37

Key message

Scalar fields are popular protagonists in cosmological theories

But

It has been long known that fundamental scalars suffer hierarchy problems

So

Scalars may not be fundamental, but pGBs.

Here a shift symmetry stabilizes both the inflaton and the Higgs potential

4

Pirsa: 15090074 Page 5/37

Two hierarchy problems

- 1. Electroweak hierarchy problem
- 2. Inflationary hierarchy problem: $V(\phi)$ width >> height

Pirsa: 15090074 Page 6/37

Two hierarchy problems

- 1. Electroweak hierarchy problem
- 2. Inflationary hierarchy problem: $V(\phi)$ width >> height

Pirsa: 15090074 Page 7/37

Two hierarchy problems

- 1. Electroweak hierarchy problem
- 2. Inflationary hierarchy problem: $V(\phi)$ width >> height

Pirsa: 15090074 Page 8/37

pGBs solve hierarchy problems!

- A (discrete) shift symmetry can protect a scalar potential from HDOs
- The scalar is the GB of a global symmetry G broken to its subgroup H at scale f
 - Potential forbidden at tree level by (continuous) shift symmetry
- Small potential (with discrete shift symmetry) generated when G is not exact
 - Well known examples: axions, pions, ...

7

Pirsa: 15090074 Page 9/37

The pGB Higgs we already knew...

- Higgs doublet is a GB of G/H
 - G/H contains an SU(2) doublet

The Minimal Composite Higgs Model

Kaustubh Agashe*, Roberto Contino*, Alex Pomarol*

*Department of Physics and Astronomy, Johns Hopkins University
Baltimore, Maryland 21218, USA

*IFAE, Universitat Autônoma de Barcelona, 08193 Bellaterra, Barcelona, Spain

- H contains the SM group (and custodial symmetry)
- Potential generated radiatively
 - Weakly gauge a subgroup of G
 - Fermions couple to the Higgs through partial compositeness: $\lambda \bar{\psi} \mathcal{O}$
 - Loops of bosons and fermions generate a potential as a periodic function of h/f
- Couplings deviate from SM with $\xi = v^2/f^2$

8

Pirsa: 15090074 Page 10/37

The pGB inflaton we already knew...

Natural InflationTM
 pGB is an axion

$$V(\phi) = \Lambda^4 \left(1 + \cos \frac{\phi}{f} \right)$$

• NITM + CMB:

Freese, Frieman, Olinto (PRL, 1990) Planck 2015

9

Pirsa: 15090074 Page 11/37

The pGB inflaton we already knew...

- Natural Inflation[™]
 - pGB is an axion

$$V(\phi) = \Lambda^4 \left(1 + \cos \frac{\phi}{f} \right)$$

- NITM + CMB:
 - Radiatively stable ✓
 - − UV robust X

Freese, Frieman, Olinto (PRL, 1990) Planck 2015

10

Pirsa: 15090074 Page 12/37

UV Robustness

- Quantum Gravity does not preserve global symmetries (explicitly breaks G)

 Kallosh, Linde, Linde, Susskind, arXiv:9502069
 - Realistic potential will have large UV corrections
 - Demonstrated explicitly for NI
 Montero, Uranga, Valenzuela,
 arXiv:1503.03886
- Not robust against UV corrections X
 - → pGB inflation (such as NITM) with f > M_p is not a good effective theory, i.e. predictivity is lost

11

Pirsa: 15090074 Page 13/37

12

Pirsa: 15090074 Page 14/37

Can we find models with a pGB inflaton and with sub-Planckian scales?

13

Pirsa: 15090074 Page 15/37

Pirsa: 15090074 Page 16/37

Double-double* solution

- Flatness of inflation potential and lightness of the Higgs have a common origin
 - Higgs doublet and inflaton η are pGBs of the same symmetry breaking
 - Goldstone Inflation and Composite Higgs scenarios
- Reheating: η → 2 h → SM, perturbative
- Minimal realization, G/H= SU(4)/Sp(4) (≅ SO(6)/SO(5))

* I was told this is Canadian slang

Pirsa: 15090074 Page 17/37

Double-double* solution

- Flatness of inflation potential and lightness of the Higgs have a common origin
 - Higgs doublet and inflaton η are pGBs of the same symmetry breaking
 - Goldstone Inflation and Composite Higgs scenarios
- Reheating: η → 2 h → SM, perturbative
- Minimal realization, G/H= SU(4)/Sp(4) (≅ SO(6)/SO(5))

* I was told this is Canadian slang

Pirsa: 15090074 Page 18/37

pGBs realize mass hierarchies

 CMB data and constraints on perturbative reheating fix the spectrum in terms of f and M_p

Pirsa: 15090074 Page 19/37

EFT for pGBs: CCWZ

Callan, Coleman, Wess and Zumino (CCWZ), PRL 1969

- We want:
 - Global SO(6) of the strong sector spontaneously broken to SO(5) (at scale f) → 5 GBs
 - SO(6) explicitly broken by gauging the SM group
 - 3 GBs form the longitudinal components of the SU(2) gauge fields
 - 2 GBs form the inflaton and the Higgs
- We describe the effective theory using CCWZ

19

Pirsa: 15090074 Page 20/37

EFT for pGBs: CCWZ

Parameterize GBs non-linearly, general vacuum¹

$$\Sigma_0 = \left(\begin{array}{cccc} 0 & e^{i\alpha}\cos(\theta) & \sin(\theta) & 0 \\ -e^{i\alpha}\cos(\theta) & 0 & 0 & \sin(\theta) \\ -\sin(\theta) & 0 & 0 & -e^{-i\alpha}\cos(\theta) \\ 0 & -\sin(\theta) & e^{-i\alpha}\cos(\theta) & 0 \end{array} \right)$$

$$\Sigma(x) = \Sigma_0 \exp(iT^{\hat{a}}\phi^{\hat{a}}(x)/f)$$

1) Galloway, Evans, Luty, Tacchi [arXiv: 1001.1361]

- Σ is a fundamental of SO(6)
 - GBs φ exhibit shift symmetry

$$\sum \to e^{iT^a \alpha^a} \sum \phi^{\hat{a}} \to \phi^{\hat{a}} + f\alpha^{\hat{a}}$$

20

A CW potential from fermion loops

- Implement fermions in SU(4) representation
 - Decomposes under SU(2)_L x SU(2)_R

$${f 6}=({f 2},{f 2})\oplus ({f 1},{f 1})\oplus ({f 1},{f 1})$$

• Write down the effective low energy Lagrangian in terms of form factors:

$$egin{aligned} \mathcal{L}_{eff} &= \sum_{r=q,u,q',d} \left[\Pi_0^r \mathrm{Tr}[\overline{\Psi}_r
ot\!\!/ \Psi_r] + \Pi_1^r \mathrm{Tr}\left[\overline{\Psi}_r \Sigma
ight]
ot\!\!/ \mathrm{Tr}[\Psi_r \Sigma^\dagger]
ight] \ &+ M_u \mathrm{Tr}\left[\overline{\Psi}_q \Sigma
ight] \mathrm{Tr}[\Psi_u \Sigma^\dagger] + M_d \mathrm{Tr}\left[\overline{\Psi}_{q'} \Sigma
ight] \mathrm{Tr}[\Psi_d \Sigma^\dagger] \end{aligned}$$

Pirsa: 15090074 Page 22/37

A CW potential from fermion loops

Loops generate a Coleman Weinberg potential

$$V(h,\eta) = m_h^2 h^2 + \lambda_h h^4 + m_\eta^2 \eta^2 + c_\eta \eta^3 + \lambda_\eta \eta^4 + c_3 \eta h^2 + c_4 h^2 \eta^2$$

 Coleman-Weinberg potential is in terms of integrals over form factors, for instance,

$$m_{\eta}^2 = -2N_c f^2 \int rac{d^4 p}{(2\pi)^4} rac{\left(\epsilon_u^2 - 1
ight)^2}{\Pi_0} \; \left(\Pi_1^t (\Pi_0^q + \Pi_0^{q'}) - rac{3(\Pi_1^t)^2 \left(\epsilon_u^2 - 1
ight) (\Pi_0^q + \Pi_0^{q'})^2}{2\Pi_0}
ight)$$

Pirsa: 15090074 Page 23/37

A CW potential from fermion loops

Loops generate a Coleman Weinberg potential

$$V(h,\eta) = m_h^2 h^2 + \lambda_h h^4 + m_\eta^2 \eta^2 + c_\eta \eta^3 \ + \lambda_\eta \eta^4 + c_3 \eta h^2 + c_4 h^2 \eta^2$$

 Coleman-Weinberg potential is in terms of integrals over form factors, for instance,

$$m_{\eta}^2 = -2N_c f^2 \int \frac{d^4 p}{(2\pi)^4} \frac{\left(\epsilon_u^2 - 1\right)^2}{\text{Find the other coefficients in coefficients in Hep-ph 1507.04653}}{\text{Hep-ph 1507.04653}} 3(\Pi_1^t)^2 \left(\epsilon_u^2 - 1\right) (\Pi_0^q + \Pi_0^{q'})^2$$

Pirsa: 15090074 Page 24/37

Can we find models with a pGB inflaton and with sub-Planckian scales

&

which also allow for perturbative reheating to a pGB Higgs?

25

Pirsa: 15090074 Page 25/37

 CCWZ in general vacuum of SU(4)/Sp(4) + fermions in 6 of SU(4)

$$\mathcal{L}_{kin} = \frac{1}{2} (\partial_{\mu} h)^2 + \frac{1}{2} (\partial_{\mu} \eta)^2 + \frac{1}{2} \frac{(h \partial_{\mu} h + \eta \partial_{\mu} \eta)^2}{f^2 - h^2 - \eta^2}$$

Coleman Weinberg potential:

$$V(h,\eta) = m_h^2 h^2 + (\lambda_h) h^4 + (m_\eta^2) \eta^2 + (c_\eta) \eta^3$$
 Functions of UV dynamics, fermion representation and choice of vacuum

 CCWZ + fermions in 6 of SU(4) + Coleman Weinberg mechanism:

$$\mathcal{L}_{kin} = rac{1}{2} (\partial_{\mu} h)^2 + rac{1}{2} (\partial_{\mu} \eta)^2 + rac{1}{2} rac{(h \partial_{\mu} h + \eta \partial_{\mu} \eta)^2}{f^2 - h^2 - \eta^2}$$

CP breaking terms:

$$V(h,\eta) = m_h^2 h^2 + \lambda_h h^4 + m_\eta^2 \eta^2 + c_\eta \eta^3 + \lambda_\eta \eta^4 + c_3 \eta h^2 + c_4 h^2 \eta^2$$

 CCWZ + fermions in 6 of SU(4) + Coleman Weinberg mechanism:

$$\mathcal{L}_{kin} = rac{1}{2} (\partial_{\mu} h)^2 + rac{1}{2} (\partial_{\mu} \eta)^2 + rac{1}{2} rac{(h \partial_{\mu} h + \eta \partial_{\mu} \eta)^2}{f^2 - h^2 - \eta^2}$$

CP breaking terms:

$$V(h,\eta) = m_h^2 h^2 + \lambda_h h^4 + m_\eta^2 \eta^2 + c_\eta \eta^3 + \lambda_\eta \eta^4 + c_3 \eta h^2 + c_4 h^2 \eta^2$$

During inflation Higgs sits at its minimum,

$$\mathcal{L}_{kin} = rac{1}{2}(\partial_{\mu}\eta)^2 + rac{1}{2}rac{\left(\eta\partial_{\mu}\eta
ight)^2}{f^2-\eta^2}$$

• Canonically normalize inflaton field by field redefinition: $\phi = f \arcsin{(\eta/f)}$

$$V_{CP}(\phi) = m_{\eta}^2 f^2 \left(\sin(\phi/f)^2 + \frac{\lambda_{\eta} f^2}{m_{\eta}^2} \sin(\phi/f)^4 \right)$$

Pirsa: 15090074 Page 29/37

During inflation Higgs sits at its minimum,

$$\mathcal{L}_{kin} = rac{1}{2}(\partial_{\mu}\eta)^2 + rac{1}{2}rac{\left(\eta\partial_{\mu}\eta
ight)^2}{f^2-\eta^2}$$

• Canonically normalize inflaton field by field redefinition: $\phi = f \arcsin{(\eta/f)}$

$$V_{CP}(\phi) = m_{\eta}^2 f^2 \left(\sin(\phi/f)^2 + \frac{\lambda_{\eta} f^2}{m_{\eta}^2} \sin(\phi/f)^4 \right)$$

This is a hilltop potential,

$$V_{CP}(\phi) = m_{\eta}^2 f^2 \left(\sin(\phi/f)^2 + \frac{\lambda_{\eta} f^2}{m_{\eta}^2} \sin(\phi/f)^4 \right)$$

Pirsa: 15090074 Page 31/37

This is a hilltop potential,

$$V_{CP}(\phi) = m_{\eta}^2 f^2 \left(\sin(\phi/f)^2 + \frac{\lambda_{\eta} f^2}{m_{\eta}^2} \sin(\phi/f)^4 \right)$$

$$n_s = [.948 - .982]$$

for $\lambda_{\eta} f^2 \gtrsim -m_{\eta}^2/2$
 $r \leq .1$
for $c_{\eta} \leq \mathcal{O}(10^{-1}) \, m_{\eta}^2/f$

Pirsa: 15090074 Page 32/37

Assumptions for Perturbativity

Mathieu equation

$$\frac{d^{2}\mu_{k}}{dz^{2}} + [A_{k} - 2q_{i} \cos(2z)] \mu_{k} = 0$$

• Perturbative for $q_i \ll 1$

$$m_h^2/f^2 + c_4 \ll 10m_\eta^2/f^2$$
 $c_3 \ll m_\eta^2/f$

$$egin{aligned} q_0 &= rac{\Phi_0^2}{4f^2a^3} \ q_3 &= rac{\sigma\Phi_0}{m_\phi^2a^{3/2}} \ q_4 &= rac{g^2\Phi_0^2}{4m_\phi^2a^3} \ A_k &= rac{k^2 + m_\chi^2}{m_\phi^2a^2} + 2q_{(0,4)} \end{aligned}$$

Pirsa: 15090074 Page 34/37

Constraints on inflaton-Higgs mixing

Pirsa: 15090074 Page 35/37

Cosmology with Goldstone bosons

- Can address in a single model
 - Hierarchy problem of inflation (naturally flat potential)
 - EW hierarchy problem
- A minimal model realizes
 - Inflation compatible with Planck 2015 data
 - Perturbative reheating

Connects to EW data and gives boundary conditions for UV completion

Pirsa: 15090074 Page 36/37

Thank you!

Let me know if you have questions,

Now or Never Later!

Pirsa: 15090074 Page 37/37