Title: Spectral Action Models of Gravity and Packed Swiss Cheese Cosmology
Date: Sep 12, 2015 02:30 PM
URL: http://pirsa.org/15090060
Abstract: < $\mathrm{p}>$ We consider the spectral action as an<br> action functional for modified gravity on a spacetime<br> that exhibits a fractal structure modeled on an<br> Apollonian packing of 3 -spheres (packed swiss<br> cheese) or on a fractal arrangements of dodecahedral<br> spaces. The contributions in the asymptotic expansion<br> of the spectral action, that arise from the real poles of <br> the zeta function, include the Einstein-Hilbert action<br> with cosmological term and conformal and Gauss-Bonnet<br> gravity terms. We show that these contributions are<br> affected by the presence of fractality, which modifies the<br> corresponding effective gravitational and cosmological<br> constants, while an additional term appears in the action,<br> which is entirely due to fractality. This term is further<br> affected by a contribution of oscillatory terms coming<br> from the poles of the zeta function that are off the real<br> line, which are also a property specific to fractals. We<br> show that the shape of the slow-roll potential obtained<br> by scalar perturbations of the Dirac operators is also<br> affected by the presence of fractality.<br>
The talk is based on joint work with Adam Ball.</p>

# Spectral Action Models of Gravity and Packed Swiss Cheese Cosmologies 

Matilde Marcolli<br>Perimeter Institute, Cosmology, September 2015

## Based on:

- Adam Ball, Matilde Marcolli, Spectral Action Models of Gravity on Packed Swiss Cheese Cosmology, arXiv:1506.01401

Homogeneity versus Isotropy in Cosmology

- Homogeneous and isotropic: Friedmann universe $\mathbb{R} \times S^{3}$

$$
\pm d t^{2}+a(t)^{2}\left(\sigma_{1}^{2}+\sigma_{2}^{2}+\sigma_{3}^{2}\right)
$$

with round metric on $S^{3}$ with $S U(2)$-invariant 1-forms $\left\{\sigma_{i}\right\}$ satisfying relations

$$
d \sigma_{i}=\sigma_{j} \wedge \sigma_{k}
$$

for all cyclic permutations $(i, j, k)$ of $(1,2,3)$

- Homogeneous but not isotropic:

Bianchi IX mixmaster models $\mathbb{R} \times S^{3}$

$$
F(t)\left( \pm d t^{2}+\frac{\sigma_{1}^{2}}{W_{1}^{2}(t)}+\frac{\sigma_{2}^{2}}{W_{2}^{2}(t)}+\frac{\sigma_{3}^{2}}{W_{3}^{3}(t)}\right)
$$

with a conformal factor $F(t) \sim W_{1}(t) W_{2}(t) W_{3}(t)$

- Isotropic but not homogeneous?
$\Rightarrow$ Swiss Cheese Models


## Main Idea:

- M.J. Rees, D.W. Sciama, Large-scale density inhomogeneities in the universe, Nature, Vol. 217 (1968) 511-516.


Cut off 4-balls from a FRW spacetime and replace with different density smaller region outside/inside patched across boundary with vanishing Weyl curvature tensor (isotropy preserved)

## Packed Swiss Cheese Cosmology

- Iterate construction removing more and more balls $\Rightarrow$ Apollonian sphere packing of 3-dimensional spheres
- Residual set of sphere packing is fractal
- Proposed as explanation for possible fractal distribution of matter in galaxies, clusters, and superclusters
- F. Sylos Labini, M. Montuori, L. Pietroneo, Scale-invariance of galaxy clustering, Phys. Rep. Vol. 293 (1998) N. 2-4, 61-226.
- J.R. Mureika, C.C. Dyer, Multifractal analysis of Packed Swiss Cheese Cosmologies, General Relativity and Gravitation, Vol. 36 (2004) N.1, 151-184.



## Apollonian sphere packings

- best known and understood case: Apollonian circle packing


Configurations of mutually tanget circles in the plane, iterated on smaller scales filling a full volume region in the unit $2 D$ ball: residual set volume zero fractal of Hausdorff dimension 1.30568...

- Many results (geometric, arithmetic, analytic) known about Apollonian circle packings: see for example
- R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks, C.H.Yan, Apollonian circle packings: number theory, J. Number Theory 100 (2003) 1-45
- A. Kontorovich, H. Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, Journal of AMS, Vol 24 (2011) 603-648.
- Higher dimensional analogs of Apollonian packings: much more delicate and complicated geometry
- R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks, C.H.Yan, Apollonian Circle Packings: Geometry and Group Theory III. Higher Dimensions, Discrete Comput. Geom. 35 (2006) 37-72.

Some known facts on Apollonian sphere packings

- Descartes configuration in $D$ dimensions: $D+2$ mutually tangent ( $D-1$ )-dimensional spheres
- Example: start with $D+1$ equal size mutually tangent $S^{D-1}$ centered at the vertices of $D$-simplex and one more smaller sphere in the center tangent to all


4-dimensional simplex

- Quadratic Soddy-Gosset relation between radii $a_{k}$

$$
\left(\sum_{k=1}^{D+2} \frac{1}{a_{k}}\right)^{2}=D \sum_{k=1}^{D+2}\left(\frac{1}{a_{k}}\right)^{2}
$$

- curvature-center coordinates: $(D+2)$-vector

$$
w=\left(\frac{\|x\|^{2}-a^{2}}{a}, \frac{1}{a}, \frac{1}{a} x_{1}, \ldots, \frac{1}{a} x_{D}\right)
$$

(first coordinate curvature after inversion in the unit sphere)

- Configuration space $\mathcal{M}_{D}$ of all Descartes configuration in $D$ dimensions $=$ all solutions $\mathcal{W}$ to equation

$$
\mathcal{W}^{t} Q_{D} \mathcal{W}=\left(\begin{array}{ccc}
0 & -4 & 0 \\
-4 & 0 & 0 \\
0 & 0 & 2 I_{D}
\end{array}\right)
$$

with left and a right action of Lorentz group $O(D \neq 1,1)$

- Dual Apollonian group $\mathcal{G}_{D}^{\perp}$ generated by reflections: inversion with respect to the $j$-th sphere

$$
S_{j}^{\perp}=I_{D+2}+21_{D+2} e_{j}^{t}-4 e_{j} e_{j}^{t}
$$

$e_{j}=j$-th unit coordinate vector

- $D \neq 3$ : only relations in $\mathcal{G}_{D}^{\perp}$ are $\left(S_{j}^{\perp}\right)^{2}=1$
- $\mathcal{G}_{D}^{\perp}$ discrete subgroup of $\mathrm{GL}(D+2, \mathbb{R})$
- Apollonian packing $\mathcal{P}_{D}=$ an orbit of $\mathcal{G}_{D}^{\perp}$ on $\mathcal{M}_{D}$
$\Rightarrow$ iterative construction: at $n$-th step add spheres obtained from initial Descartes configuration via all possible

$$
S_{j_{1}}^{\perp} S_{j_{2}}^{\perp} \cdots S_{j_{n}}^{\perp}, \quad j_{k} \neq j_{k+1}, \forall k
$$

there are $N_{n}$ spheres in the $n$-th level

$$
N_{n}=(D+2)(D+1)^{n-1}
$$

- Length spectrum: radii of spheres in packing $\mathcal{P}_{D}$

$$
\mathcal{L}=\mathcal{L}\left(\mathcal{P}_{D}\right)=\left\{a_{n, k}: n \in \mathbb{N}, 1 \leq k \leq(D+2)(D+1)^{n-1}\right\}
$$

radii of spheres $S_{a_{n, k}}^{D-1}$

- Melzak's packing constant $\sigma_{D}\left(\mathcal{P}_{D}\right)$ exponent of convergence of series

$$
\zeta_{\mathcal{L}}(s)=\sum_{n=1}^{\infty} \sum_{k=1}^{(D+2)(D+1)^{n-1}} a_{n, k}^{s}
$$

- Residual set: $\mathcal{R}\left(\mathcal{P}_{D}\right)=B^{D} \backslash \cup_{n, k} B_{a_{n, k}}^{D}$ with $\partial B_{a_{n, k}}^{D}=S_{a_{n, k}}^{D-1} \in \mathcal{P}_{D}$
- Packing $\Rightarrow \operatorname{Vol}_{D}\left(\mathcal{R}\left(\mathcal{P}_{D}\right)\right)=0 \Rightarrow \sum_{\mathcal{L}} a_{n, k}^{D}<\infty \Rightarrow \sigma_{D}\left(\mathcal{P}_{D}\right) \leq D$
- packing constant and Hausdorff dimension:

$$
\operatorname{dim}_{H}\left(\mathcal{R}\left(\mathcal{P}_{D}\right)\right) \leq \sigma_{D}\left(\mathcal{P}_{D}\right)
$$

for Apollonian circles known to be same

- Sphere counting function: spheres with given curvature bound

$$
\mathcal{N}_{\alpha}\left(\mathcal{P}_{D}\right)=\#\left\{S_{a_{n, k}}^{D-1} \in \mathcal{P}_{D}: a_{n, k} \geq \alpha\right\}
$$

curvatures $c_{n, k}=a_{n, k}^{-1} \leq \alpha^{-1}$

- for Apollonian circles power law (Kontorovich-Oh)

$$
\mathcal{N}_{\alpha}\left(\mathcal{P}_{2}\right) \sim_{\alpha \rightarrow 0} \alpha^{-\operatorname{dim}_{H}\left(\mathcal{R}\left(\mathcal{P}_{2}\right)\right)}
$$

- for higher dimensions (Boyd): packing constant

$$
\limsup _{\alpha \rightarrow 0}-\frac{\log \mathcal{N}_{\alpha}\left(\mathcal{P}_{D}\right)}{\log \alpha}=\sigma_{D}\left(\mathcal{P}_{D}\right)
$$

if limit exists $\mathcal{N}_{\alpha}\left(\mathcal{P}_{D}\right) \sim_{\alpha \rightarrow 0} \alpha^{-\left(\sigma_{D}\left(\mathcal{P}_{D}\right)+o(1)\right)}$

## Screens and Windows

- in general $\zeta_{\mathcal{L}_{D}}(s)$ need have analytic continuation to meromorphic on whole $\mathbb{C}$
- $\exists$ screen $\mathcal{S}$ : curve $S(t)+$ it with $S: \mathbb{R} \rightarrow\left(-\infty, \sigma_{D}\left(\mathcal{P}_{D}\right)\right]$
- window $\mathcal{W}=$ region to the right of screen $\mathcal{S}$ where analytic continuation
- M.L. Lapidus, M. van Frankenhuijsen, Fractal geometry, complex dimensions and zeta functions. Geometry and spectra of fractal strings, Second edition. Springer Monographs in Mathematics. Springer, 2013.


## Screens and windows



## Some additional assumptions

## - Definition:

Apollonian packing $\mathcal{P}_{D}$ of ( $D-1$ )-spheres is analytic if
(1) $\zeta_{\mathcal{L}}(s)$ has analytic to meromorphic function on a region $\mathcal{W}$ containing $\mathbb{R}_{+}$
(2) $\zeta_{\mathcal{L}}(s)$ has only one pole on $\mathbb{R}_{+}$at $s=\sigma_{D}\left(\mathcal{P}_{D}\right)$.
(0) pole at $s=\sigma_{D}\left(\mathcal{P}_{D}\right)$ is simple

- Also assume: $\exists \lim _{\alpha \rightarrow 0}-\frac{\log \mathcal{N}_{\alpha}\left(\mathcal{P}_{D}\right)}{\log \alpha}=\sigma_{D}\left(\mathcal{P}_{D}\right)$
- Question: in general when are these satisfied for packings $\mathcal{P}_{D}$ ?
- focus on $D=4$ cases with these conditions

Rough estimate of the packing constant

- $\mathcal{P}=\mathcal{P}_{4}$ Apollonian packing of 3-spheres $S_{a_{n, k}}^{3}$
- at level $n$ : average curvature

$$
\frac{\gamma_{n}}{N_{n}}=\frac{1}{6 \cdot 5^{n-1}} \sum_{k=1}^{6 \cdot 5^{n-1}} \frac{1}{a_{n, k}}
$$

- estimate $\sigma_{4}\left(\mathcal{P}_{4}\right)$ with averaged version: $\sum_{n} N_{n}\left(\frac{\gamma_{n}}{N_{n}}\right)^{-s}$

$$
\sigma_{4, a v}(\mathcal{P})=\lim _{n \rightarrow \infty} \frac{\log \left(6 \cdot 5^{n-1}\right)}{\log \left(\frac{\gamma_{n}}{6.5 n-1}\right)}
$$

- generating function of the $\gamma_{n}$ known (Mallows)

$$
G_{D=4}=\sum_{n=1}^{\infty} \gamma_{n} x^{n}=\frac{(1-x)(1-4 x) u}{1-\frac{22}{3} x-5 x^{2}}
$$

$u=$ sum of the curvatures of initial Descartes configuration

- obtain explicitly ( $u=1$ case)

$$
\gamma_{n}=\frac{(11+\sqrt{166})^{n}(-64+9 \sqrt{166})+(11-\sqrt{166})^{n}(64+9 \sqrt{166})}{3^{n} \cdot 10 \cdot \sqrt{166}}
$$

- this gives a value

$$
\sigma_{4, a v}(\mathcal{P})=3.85193 \ldots
$$

- in Apollonian circle case where $\sigma(\mathcal{P})$ known this method gives larger value, so expect $\sigma_{4}(\mathcal{P})<\sigma_{4, a v}(\mathcal{P})$
- constraints on the packing constant:

$$
3<\operatorname{dim}_{H}(\mathcal{R}(\mathcal{P})) \leq \sigma_{4}(\mathcal{P})<\sigma_{4, a v}(\mathcal{P})=3.85193 \ldots
$$

Models of (Euclidean, compactified) spacetimes
(1) Homogeneous Isotropic cases: $S_{\beta}^{1} \times S_{a}^{3}$
(2) Cosmic Topology cases: $S_{\beta}^{1} \times Y$ with $Y$ a spherical space form $S^{3} / \Gamma$ or a flat Bieberbach manifold $T^{3} / \Gamma$ (modulo finite groups of isometries)
(0) Packed Swiss Cheese: $S_{\beta}^{1} \times \mathcal{P}$ with Apollonian packing of 3-spheres $S_{a_{n, k}}^{3}$

- Fractal arrangements with cosmic topology
- considered a likely candidate for cosmic topology
- S. Caillerie, M. Lachièze-Rey, J.P. Luminet, R. Lehoucq, A. Riazuelo, J. Weeks, A new analysis of the Poincaré dodecahedral space model, Astron. and Astrophys. 476 (2007) N.2, 691-696

- build a fractal model based on dodecahedral space

Fractal configurations of dodecahedra (Sierpinski dodecahedra)


- spherical dodecahedron has $\operatorname{Vol}(Y)=\operatorname{Vol}\left(S_{a}^{3} / \mathcal{I}_{120}\right)=\frac{\pi^{2}}{60} a^{3}$
- simpler than sphere packings because uniform scaling at each step: $20^{n}$ new dodecahedra, each scaled by a factor of $(2+\phi)^{-n}$

$$
\operatorname{dim}_{H}\left(\mathcal{P}_{\mathcal{I}_{120}}\right)=\frac{\log (20)}{\log (2+\phi)}=2.32958 \ldots
$$

- close up all dodecahedra in the fractal identifying edges with
$\mathcal{I}_{120}$ : get fractal arrangement of Poincaré spheres $Y_{a(2+\phi)^{-n}}$
- zeta function has analytic continuation to all $\mathbb{C}$

$$
\zeta_{\mathcal{L}}(s)=\sum_{n} 20^{n}(2+\phi)^{-n s}=\frac{1}{1-20(2+\phi)^{-s}}
$$

exponent of convergence $\sigma=\operatorname{dim}_{H}\left(\mathcal{P}_{\mathcal{I}_{120}}\right)=\frac{\log (20)}{\log (2+\phi)}$ and poles

$$
\sigma+\frac{2 \pi i m}{\log (2+\phi)}, \quad m \in \mathbb{Z}
$$

Spectral action models of gravity (modified gravity)

- Spectral triple: $(\mathcal{A}, \mathcal{H}, D)$
(1) unital associative algebra $\mathcal{A}$
(2) represented as bounded operators on a Hilbert space $\mathcal{H}$
(3) Dirac operator: self-adjoint $D^{*}=D$ with compact resolvent, with bounded commutators $[D, a]$
- prototype: $\left(C^{\infty}(M), L^{2}(M, S), D_{M}\right)$
- extends to non smooth objects (fractals) and noncommutative (NC tori, quantum groups, NC deformations, etc.)


## Action functional

- Suppose finitely summable $S T=(\mathcal{A}, \mathcal{H}, D)$

$$
\zeta_{D}(s)=\operatorname{Tr}\left(|D|^{-s}\right)<\infty, \quad \Re(s) \gg 0
$$

- Spectral action (Chamseddine-Connes)

$$
\mathcal{S}_{S T}(\Lambda)=\operatorname{Tr}(f(D / \Lambda))=\sum_{\lambda \in \operatorname{Spec}(D)} \operatorname{Mult}(\lambda) f(\lambda / \Lambda)
$$

$f=$ smooth approximation to (even) cutoff

Asymptotic expansion (Chamseddine-Connes) for (almost) commutative geometries:

$$
\operatorname{Tr}(f(D / \Lambda)) \sim \sum_{\beta \in \Sigma_{S T}^{+}} f_{\beta} \Lambda^{\beta} f|D|^{-\beta}+f(0) \zeta_{D}(0)
$$

- Residues

$$
f|D|^{-\beta}=\frac{1}{2} \operatorname{Res}_{s=\beta} \zeta_{D}(s)
$$

- Momenta $f_{\beta}=\int_{0}^{\infty} f(v) v^{\beta-1} d v$
- Dimension Spectrum $\Sigma_{S T}$ poles of zeta functions $\zeta_{a, D}(s)=\operatorname{Tr}\left(a|D|^{-s}\right)$
- positive dimension spectrum $\Sigma_{S T}^{+}=\Sigma_{S T} \cap \mathbb{R}_{+}^{*}$

Warning: for fractal spaces also oscillatory terms coming from part of $\Sigma_{S T}$ off the real line

## Zeta function and heat kernel (manifolds)

- Mellin transform

$$
|D|^{-s}=\frac{1}{\Gamma(s / 2)} \int_{0}^{\infty} e^{-t D^{2}} t^{\frac{s}{2}-1} d t
$$

- heat kernel expansion

$$
\operatorname{Tr}\left(e^{-t D^{2}}\right)=\sum_{\alpha} t^{\alpha} c_{\alpha} \quad \text { for } \quad t \rightarrow 0
$$

- zeta function expansion

$$
\zeta_{D}(s)=\operatorname{Tr}\left(|D|^{-s}\right)=\sum_{\alpha} \frac{c_{\alpha}}{\Gamma(s / 2)(\alpha+s / 2)}+\text { holomorphic }
$$

- taking residues

$$
\operatorname{Res}_{s=-2 \alpha} \zeta_{D}(s)=\frac{2 c_{\alpha}}{\Gamma(-\alpha)}
$$

Example spectral action of the round 3 -sphere $S^{3}$

$$
\mathcal{S}_{S^{3}}(\Lambda)=\operatorname{Tr}\left(f\left(D_{S^{3}} / \Lambda\right)\right)=\sum_{n \in \mathbb{Z}} n(n+1) f\left(\left(n+\frac{1}{2}\right) / \Lambda\right)
$$

- zeta function

$$
\zeta_{D_{s^{3}}}(s)=2 \zeta\left(s-2, \frac{3}{2}\right)-\frac{1}{2} \zeta\left(s, \frac{3}{2}\right)
$$

$\zeta(s, q)=$ Hurwitz zeta function

- by asymptotic expansion

$$
\mathcal{S}_{S^{3}}(\Lambda) \sim \Lambda^{3} f_{3}-\frac{1}{4} \Lambda f_{1}
$$

- can also compute using Poisson summation formula
(Chamseddine-Connes): estimate error term $O\left(\Lambda^{-\infty}\right)$

Example: round 3-sphere $S_{a}^{3}$ radius a

$$
\begin{gathered}
\zeta_{D_{S_{a}^{3}}}(s)=a^{s}\left(2 \zeta\left(s-2, \frac{3}{2}\right)-\frac{1}{2} \zeta\left(s, \frac{3}{2}\right)\right) \\
\mathcal{S}_{S_{a}^{3}}(\Lambda) \sim(\Lambda a)^{3} f_{3}-\frac{1}{4}(\Lambda a) f_{1}
\end{gathered}
$$

Example: spherical space form $Y=S_{a}^{3} / \Gamma$ (Ćaćić, Marcolli, Teh)

$$
\mathcal{S}_{Y}(\Lambda) \sim \frac{1}{\# \Gamma} \mathcal{S}_{S_{a}^{3}}(\Lambda)
$$

Why a model of (Euclidean) Gravity?

- $M$ compact Riemannian 4-manifold

$$
\operatorname{Tr}(f(D / \Lambda)) \sim 2 \Lambda^{4} f_{4} a_{0}+2 \Lambda^{2} f_{2} a_{2}+f_{0} a_{4}
$$

coefficients $a_{0}, a_{2}$ and $a_{4}$ :

- cosmological term

$$
f_{4} \Lambda^{4} f|D|^{-4}=\frac{48 f_{4} \Lambda^{4}}{\pi^{2}} \int \sqrt{g} d^{4} x
$$

- Einstein-Hilbert term

$$
f_{2} \Lambda^{2} f|D|^{-2}=\frac{96 f_{2} \Lambda^{2}}{24 \pi^{2}} \int R \sqrt{g} d^{4} x
$$

- modified gravity terms (Weyl curvature and Gauss-Bonnet)

$$
f(0) \zeta_{D}(0)=\frac{f_{0}}{10 \pi^{2}} \int\left(\frac{11}{6} R^{*} R^{*}-3 C_{\mu \nu \rho \sigma} C^{\mu \nu \rho \sigma}\right) \sqrt{g} d^{4} x
$$

$C^{\mu \nu \rho \sigma}=$ Weyl curvature and $R^{*} R^{*}=\frac{1}{4} \epsilon^{\mu \nu \rho \sigma} \epsilon_{\alpha \beta \gamma \delta} R_{\mu \nu}^{\alpha \beta} R_{\rho \sigma}^{\gamma \delta}$ momenta: (effective) gravitational and cosmological constant

Spectral action on a fractal spacetime:

- $S_{\beta}^{1} \times \mathcal{P}$ : Apollonian packing
- $S_{\beta}^{1} \times \mathcal{P}_{\boldsymbol{Y}}$ : fractal dodecahedral space
(1) Construct a spectral triple for the geometries $\mathcal{P}$ and $\mathcal{P}_{Y}$
(2) Compute the zeta function
(3) Compute the asymptotic form of the spectral action
- Effect of product with $S_{\beta}^{1}$
$\Rightarrow$ look for new terms in the spectral action (in additional to usual gravitational terms) that detect presence of fractality

The spectral triple of a fractal geometry

- case of Sierpinski gasket: Christensen, Ivan, Lapidus
- similar case for $\mathcal{P}$ and $\mathcal{P}_{Y}$
- for $D$-dim packing

$$
\begin{gathered}
\mathcal{P}_{D}=\left\{S_{a_{n, k}}^{D-1}: n \in \mathbb{N}, 1 \leq k \leq(D+2)(D+1)^{n-1}\right\} \\
\left(\mathcal{A}_{\mathcal{P}_{D}}, \mathcal{H}_{\mathcal{P}_{D}}, \mathcal{D}_{\mathcal{P}_{D}}\right)=\oplus_{n, k}\left(\mathcal{A}_{\mathcal{P}_{D}}, \mathcal{H}_{S_{a_{n, k}}^{D-1}}, \mathcal{D}_{S_{a_{n, k}}^{D-1}}\right)
\end{gathered}
$$

- for $\mathcal{P}_{Y}$ with $Y_{a}=S^{3} / \mathcal{I}_{120}$ :

$$
\left(\mathcal{A}_{\mathcal{P}_{Y}}, \mathcal{H}_{\mathcal{P}_{Y}}, \mathcal{D}_{\mathcal{P}_{Y}}\right)=\left(\mathcal{A}_{\mathcal{P}_{Y}}, \oplus_{n} \mathcal{H}_{Y_{a n}}, \oplus_{n} D_{Y_{a_{n}}}\right)
$$

with $a_{n}=a(2+\phi)^{-n}$

## Zeta functions for Apollonian packing of 3-spheres:

- Lengths zeta function (fractal string)

$$
\zeta_{\mathcal{L}}(s):=\sum_{n \in \mathbb{N}} \sum_{k=1}^{6 \cdot 5^{n-1}} a_{n, k}^{s}
$$

with $\mathcal{L}=\mathcal{L}_{4}=\left\{a_{n, k} \mid n \in \mathbb{N}, k \in\left\{1, \ldots, 6 \cdot 5^{n-1}\right\}\right\}$

- zeta function of Dirac operator of the spectral triple

$$
\operatorname{Tr}\left(\left|\mathcal{D}_{\mathcal{P}}\right|^{-s}\right)=\sum_{n=1}^{\infty} \sum_{k=1}^{6 \cdot 5^{n-1}} \operatorname{Tr}\left(\left|D_{S_{3_{n, k}^{3}}}\right|^{-s}\right)
$$

each term $\operatorname{Tr}\left(\left|D_{S_{a_{n, k}}^{3}}\right|^{-s}\right)=a_{n, k}^{s}\left(2 \zeta\left(s-2, \frac{3}{2}\right)-\frac{1}{2} \zeta\left(s, \frac{3}{2}\right)\right)$ gives

$$
\begin{gathered}
\operatorname{Tr}\left(\left|\mathcal{D}_{\mathcal{P}}\right|^{-s}\right)=\left(2 \zeta\left(s-2, \frac{3}{2}\right)-\frac{1}{2} \zeta\left(s, \frac{3}{2}\right)\right) \sum_{n, k} a_{n, k}^{s} \\
=\left(2 \zeta\left(s-2, \frac{3}{2}\right)-\frac{1}{2} \zeta\left(s, \frac{3}{2}\right)\right) \zeta_{\mathcal{L}}(s)
\end{gathered}
$$

## Oscillatory terms (fractals)

- zeta function $\zeta_{\mathcal{L}}(s)$ on fractals in general has additional poles off the real line (position depends on Hausdorff and spectral dimension: depending on how homogeneous the fractal)
- best case exact self-similarity: $s=\sigma+\frac{2 \pi i m}{\log \ell}, m \in \mathbb{Z}$
- heat kernel on fractals has additional log-oscillatory terms in expansion

$$
\frac{C}{t^{\sigma}}\left(1+A \cos \left(\frac{2 \pi}{\log \ell} \log t+\phi\right)\right)+\cdots
$$

for constants $C, A, \phi$ : series of terms for each complex pole
effect of product with $S_{\beta}^{1}$ (leading term without oscillations)

- case of $S_{\beta}^{1} \times S_{a}^{3}$ (Chamseddine-Connes)

$$
D_{S_{\beta}^{1} \times S_{a}^{3}}=\left(\begin{array}{cc}
0 & D_{S_{a}^{3}} \otimes 1+i \otimes D_{S_{\beta}^{1}} \\
D_{S_{a}^{3}} \otimes 1-i \otimes D_{S_{\beta}^{1}} & 0
\end{array}\right)
$$

Spectral action

$$
\operatorname{Tr}\left(h\left(D_{S_{\beta}^{1} \times S_{a}^{3}}^{2} / \Lambda\right)\right) \sim 2 \beta \Lambda \operatorname{Tr}\left(\kappa\left(D_{S_{a}^{3}}^{2} / \Lambda\right)\right),
$$

test function $h(x)$, and test function

$$
\kappa\left(x^{2}\right)=\int_{\mathbb{R}} h\left(x^{2}+y^{2}\right) d y
$$

- Case of $S_{\beta}^{1} \times \mathcal{P}$ :

$$
\begin{aligned}
& \mathcal{S}_{S_{\beta}^{1} \times \mathcal{P}}(\Lambda) \sim 2 \beta\left(\Lambda^{4} \zeta_{\mathcal{L}}(3) \mathfrak{h}_{3}-\Lambda^{2} \frac{1}{4} \zeta_{\mathcal{L}}(1) \mathfrak{h}_{1}\right) \\
& +2 \beta \Lambda^{\sigma+1}\left(\zeta\left(\sigma-2, \frac{3}{2}\right)-\frac{1}{4} \zeta\left(\sigma, \frac{3}{2}\right)\right) \mathcal{R}_{\sigma} \mathfrak{h}_{\sigma}
\end{aligned}
$$

with momenta

$$
\begin{gathered}
\mathfrak{h}_{3}:=\pi \int_{0}^{\infty} h\left(\rho^{2}\right) \rho^{3} d \rho, \quad \mathfrak{h}_{1}:=2 \pi \int_{0}^{\infty} h\left(\rho^{2}\right) \rho d \rho \\
\mathfrak{h}_{\sigma}=2 \int_{0}^{\infty} h\left(\rho^{2}\right) \rho^{\sigma} d \rho
\end{gathered}
$$

## Interpretation:

- Term $2 \Lambda^{4} \beta a^{3} \mathfrak{h}_{3}-\frac{1}{2} \Lambda^{2} \beta a \mathfrak{h}_{1}$, cosmological and Einstein-Hilbert terms, replaced by

$$
2 \Lambda^{4} \beta \zeta_{\mathcal{L}}(3) \mathfrak{h}_{3}-\frac{1}{2} \Lambda^{2} \beta \zeta_{\mathcal{L}}(1) \mathfrak{h}_{1}
$$

zeta regularization of divergent series of spectral actions of 3-spheres of packing

- Additional term in gravity action functional: corrections to gravity from fractality

$$
2 \beta \Lambda^{\sigma+1}\left(\zeta\left(\sigma-2, \frac{3}{2}\right)-\frac{1}{4} \zeta\left(\sigma, \frac{3}{2}\right)\right) \mathcal{R}_{\sigma} \mathfrak{h}_{\sigma}
$$

- on product geometry $S_{\beta}^{1} \times \mathcal{P}_{Y}$

$$
\begin{aligned}
& \mathcal{S}_{S_{\beta}^{1} \times \mathcal{P}_{Y}}(\Lambda) \sim 2 \beta\left(\Lambda^{4} \frac{a^{3} \zeta_{\mathcal{L}\left(\mathcal{P}_{Y}\right)}(3)}{120} \mathfrak{h}_{3}-\Lambda^{2} \frac{a \zeta_{\mathcal{L}\left(\mathcal{P}_{Y}\right)}(1)}{120} \mathfrak{h}_{1}\right) \\
& \quad+2 \beta \Lambda^{\sigma+1} \frac{a^{\sigma}\left(\zeta\left(\sigma-2, \frac{3}{2}\right)-\frac{1}{4} \zeta\left(\sigma, \frac{3}{2}\right)\right)}{120 \log (2+\phi)} \mathfrak{h}_{\sigma}+\mathcal{S}_{S_{\beta}^{1} \times Y, \Lambda}^{o s c}
\end{aligned}
$$

- Note: correction term now at different $\sigma$ than Apollonian $\mathcal{P}$
- oscillatory terms $\mathcal{S}_{Y, \Lambda}^{o s c}$ more explicit than in the Apollonian case


## Slow-roll inflation potential from the spectral action

- perturb the Dirac operator by a scalar field $D^{2}+\phi^{2} \Rightarrow$ spectral action gives potential $V(\phi)$

- shape of $V(\phi)$ distinguishes most cosmic topologies: spherical forms and Bieberbach manifolds (Marcolli, Pierpaoli, Teh)


## Fractality corrections to potential $V(\phi)$

- additional term in potential

$$
\mathcal{U}_{\sigma}(x)=\int_{0}^{\infty} u^{(\sigma-1) / 2}(h(u+x)-h(u)) d u
$$

depends on $\sigma$ fractal dimension

- size of correction depends on (leading term)

$$
\left(\zeta\left(\sigma-2, \frac{3}{2}\right)-\frac{1}{4} \zeta\left(\sigma, \frac{3}{2}\right)\right) \mathcal{R}_{\sigma}
$$

- further corrections to $\mathcal{U}_{\sigma}$ come from the oscillatory terms
$\Rightarrow$ presence of fractality (in this spectral action model of gravity) can be read off the slow-roll potential (hence the slow-roll coefficients, which depend on $V, V^{\prime}, V^{\prime \prime}$ )

