Title: Nonassociative geometry, Hom-associative algebras, and cyclic homology - Mohammad Hassanzadeh

Date: Sep 12, 2015 09:45 AM

URL: http://pirsa.org/15090056

Abstract:

Pirsa: 15090056 Page 1/23

Nonassociative Geometry, Hom-associative algebras, Cyclic homology

Mohammad Hassanzadeh

September 2015, Perimeter Institute, Waterloo, Canada

Joint work with

Ilya Shapiro and Serkan Sutlu

Mohammad Hassanzadeh (September 2015 Nonassociative Geometry, Hom-associative

Pirsa: 15090056 Page 2/23

Nonassociatity

- Lie algebras
- Alternative algebras (Example: Octonion Algebra (Number theory, string theory))
- Alternative algebras

$$x(xy) = (xx)y$$
 (left alternative), $(yx)x = y(xx)$ (right alternative)

Jordan algebras
 Introduced by Pascual Jordan, mathematical physicist,
 to formalize the notion of an algebra of observable in quantum mechanics

$$xy = yx$$
$$(xy)(xx) = x(y(xx))$$

Mohammad Hassanzadeh (September 2011 Nonassociative Geometry, Hom-associative

30

Nonassociatity

Lie algebras

Pirsa: 15090056

- Alternative algebras (Example: Octonion Algebra (Number theory, string theory))
- Alternative algebras

$$x(xy) = (xx)y$$
 (left alternative), $(yx)x = y(xx)$ (right alternative)

Jordan algebras
 Introduced by Pascual Jordan, mathematical physicist,
 to formalize the notion of an algebra of observable in quantum mechanics

$$xy = yx$$
$$(xy)(xx) = x(y(xx))$$

Quaternion algebra O

The octonions were discovered in 1843 by John T. Graves and independently by Arthur Cayley in 1845. The octonions algebra is also called Cayley algebra.

	и	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> 5	<i>e</i> ₆	e ₇
и	и	e_1	e_2	<i>e</i> ₃	<i>e</i> ₄	<i>e</i> ₅	<i>e</i> ₆	e ₇
e_1	e_1	-u	<i>e</i> ₄	e ₇	$-e_2$	<i>e</i> ₆	$-e_{5}$	$-e_3$
e_2	e_2	− <i>e</i> ₄	-u	<i>e</i> ₅	e_1	$-e_3$	e ₇	$-e_{6}$
<i>e</i> ₃	<i>e</i> ₃	$-e_{7}$	- <i>e</i> 5	-u	<i>e</i> ₆	e_2	− <i>e</i> ₄	e_1
<i>e</i> ₄	<i>e</i> ₄	e_2	$-e_1$	$-e_{6}$	-u	e ₇	e_3	$-e_{5}$
<i>e</i> ₅	<i>e</i> ₅	$-e_{6}$	<i>e</i> ₃	$-e_{2}$	— <i>е</i> 7	-u	e_1	<i>e</i> ₄
<i>e</i> ₆	<i>e</i> ₆	<i>e</i> ₅	— e ₇	<i>e</i> ₄	$-e_3$	$-e_1$	-u	e_2
<i>e</i> ₇	e ₇	<i>e</i> ₃	<i>e</i> ₆	$-e_1$	<i>e</i> ₅	$-e_{4}$	$-e_{2}$	-u

Ilva Shapiro Serkan Su

Mohammad Hassanzadeh (September 2015 Nonassociative Geometry, Hom-associative

Pirsa: 15090056

Page 5/23

Non-Associative Geometry and the Spectral Action Principle,

Latham Boyle and Shane Farnsworth (2013-2014)

 Non-associative Spectral triple related to standard model of particle physics

$$(A, H, D) = (\mathbb{O}, \mathbb{O}, D)$$

Home-Lie algebra: Hartwig, Larsson, Silvestrove (2006)

A Home-Lie algebra is a triple $(V, [., .], \alpha)$, consisting a vector space V with a bilinear map $[., .]: V \times V \longrightarrow V$ and a linear map $\alpha: V \longrightarrow V$ satisfying

- i) [x, y] = -[y, x].
- ii) $\circlearrowleft_{x,y,z} [\alpha(x), [y,z]] = 0$. (Twisted Jacobi Identity)

Mohammad Hassanzadeh (September 2015 Nonassociative Geometry, Hom-associative

Page 7/23

Example: Deformation of sl(2)

Example

Let V be a 3 dimensional k-vector space with basis $\{X_1, X_2, X_3\}$. We define

$$[X_1, X_2] = 2x_2, \quad [X_1, X_3] = -2X_3, \quad [X_2, X_3] = X_1,$$

by a map α defined, on the basis, by the matrix $M = \begin{bmatrix} a & d & c \\ 2c & b & f \\ 2d & e & b \end{bmatrix}$ where $a,b,c,d,e,f \in k$.

Note: If the matrix M is identity matrix then we get the classical Lie algebra sl(2).

Ilva Shapiro Serkan

History

Pirsa: 15090056

- Deformation of Lie algebras
 Ruggero Santilli (Italian-American nuclear physicist)
- In 1967, Santilli considered two-parametric deformations of Lie commutator bracket in an associative algebra (A, B) = pAB qBA where p and q are scalar parameters and A and B are elements in associative algebra. (Algebra of matrices or linear operators)
- In 1978, He extended this to operator deformations of Lie product (A, B) = APB BQA, where P and Q are fixed elements in the associative algebra.
 - Motivation: Resolving certain limitations of conventional formalism of classical and quantum mechanics. (Several books and papers)

Ilva Shapiro Serkan S

Mohammad Hassanzadeh (September 2015 Nonassociative Geometry, Hom-associative

Page 9/23

History

Pirsa: 15090056

- Deformation of Lie algebras
 Ruggero Santilli (Italian-American nuclear physicist)
- In 1967, Santilli considered two-parametric deformations of Lie commutator bracket in an associative algebra (A, B) = pAB qBA where p and q are scalar parameters and A and B are elements in associative algebra. (Algebra of matrices or linear operators)
- In 1978, He extended this to operator deformations of Lie product (A, B) = APB BQA, where P and Q are fixed elements in the associative algebra.
 - Motivation: Resolving certain limitations of conventional formalism of classical and quantum mechanics. (Several books and papers)

Ilva Shapiro Serkan S

Mohammad Hassanzadeh (September 2015 Nonassociative Geometry, Hom-associative

Page 10/23

Hom-associative algebra: Silvestrov, Makhlouf (2008)

Hom-associative algebra (Hom-algebra) is a triple $(\mathcal{A}, \mu, \alpha)$ consisting of a k-vector space \mathcal{A} over a field k, and k-linear maps $\mu: \mathcal{A} \otimes \mathcal{A} \longrightarrow \mathcal{A}$ that we denote by $\mu(a,b) =: ab$, and a k-linear map $\alpha: \mathcal{A} \longrightarrow \mathcal{A}$ satisfying the Hom-associativity condition

$$\alpha(a)(bc)=(ab)\alpha(c),$$

for any $a, b, c \in A$.

Ilva Shaniro Serkan

Hom-algebras

- ullet A Hom-algebra ${\mathcal A}$ is unital if there exist $1\in {\mathcal A}$ where 1a=a1=a.
- A Hom-algebra is multiplicative if $\alpha(xy) = \alpha(x)\alpha(y)$ for all $x, y \in A$.

Mohammad Hassanzadeh (September 2015 Nonassociative Geometry, Hom-associative

Pirsa: 15090056 Page 12/23

Example

Pirsa: 15090056

Let \mathcal{A} be any associative algebra with multiplication $\mu : \mathcal{A} \otimes \mathcal{A} \longrightarrow \mathcal{A}$, and let $\alpha : \mathcal{A} \longrightarrow \mathcal{A}$ be an algebra map. Then for $\mu_{\alpha} = \alpha \circ \mu : \mathcal{A} \longrightarrow \mathcal{A}$, the triple $(\mathcal{A}, \mu_{\alpha}, \alpha)$ is a multiplicative Hom-algebra.

Ilva Shaniro Serkan

Mohammad Hassanzadeh (September 2015 Nonassociative Geometry, Hom-associative

Page 13/23

Unitality condition is a restrictive

• If Hom-algebra \mathcal{A} is unital, then for any $a, b \in \mathcal{A}$,

$$\alpha(a)b = a\alpha(b) = \alpha(ab).$$

- Therefore Unital Hom-algebras are restricted.
- There is no natural embedding of non-unital Hom-algebras to unital Hom-algebras.

Lemma (I. Shapiro, S. Sutlu, M. H)

Let $(A, \mu, \alpha, 1)$ be a multiplicative unital Hom-associative algebra. Then $\mathcal{A}\cong A_1\oplus A_2$ as algebras, where A_1 is a unital associative algebra, and A_2 is a unital (not necessarily associative) algebra. Furthermore, $\alpha: \mathcal{A} \longrightarrow \mathcal{A}$ is given by $\alpha(a_1 + a_2) = a_1$. Conversely, for any unital associative algebra A_1 and a unital (not necessarily associative) algebra A_2 , $A_1 \oplus A_2$ is a multiplicative unital Hom-associative algebra with

 $\alpha: A_1 \oplus A_2 \longrightarrow A_1 \oplus A_2$ being the projection onto A_1 .

Nonassociative Geometry, Hom-associative Mohammad Hassanzadeh

Example

Pirsa: 15090056

Let \mathcal{A} be a two dimensional vector space over a field k with a basis $\{e_1, e_2\}$. Let the multiplication $\mu : \mathcal{A} \otimes \mathcal{A} \longrightarrow \mathcal{A}$ be given by

$$e_ie_j=\left\{egin{array}{ll} e_1, & ext{if } (i,j)=(1,1)\ e_2 & ext{if } (i,j)
eq (1,1). \end{array}
ight.$$

Then via the map

$$\alpha: \mathcal{A} \longrightarrow \mathcal{A}, \qquad \alpha(e_1) = e_1 - e_2, \quad \alpha(e_2) = 0,$$

the triple $(\mathcal{A}, \mu, \alpha)$ is a multiplicative Hom-associative algebra with the unit $1 := e_1$. We have $\mathcal{A} = k(e_1 - e_2) \oplus ke_2$.

Ilya Shapiro Serkan S

Mohammad Hassanzadeh (September 2015 Nonassociative Geometry, Hom-associative

Page 15/23

ullet \mathcal{A} -Right module

$$\beta(v) \cdot (ab) = (v \cdot a) \cdot \alpha(b)$$

 \bullet \mathcal{A} -bimodule

$$\alpha(a) \cdot (v \cdot b) = (a \cdot v) \cdot \alpha(b)$$

Mohammad Hassanzadeh (September 2015 Nonassociative Geometry, Hom-associative / 30

Pirsa: 15090056 Page 16/23

Example

Any Hom-associative algebra (A, μ, α) is a A-bimodule over itself by multiplication and $\beta = \alpha$.

Remark

Pirsa: 15090056

The algebraic dual A^* is NOT necessarily an A-module via the coregular actions,

$$(a \cdot f)(b) = f(ba)$$
 or $(f \cdot a)(b) = f(ab)$

or their α -twisted versions

$$(a \cdot f)(b) = f(b\alpha(a))$$
 or $(f \cdot a)(b) = f(\alpha(a)b)$

Ilva Shapiro Serkan Si

Example

Any Hom-associative algebra (A, μ, α) is a A-bimodule over itself by multiplication and $\beta = \alpha$.

Remark

Pirsa: 15090056

The algebraic dual A^* is NOT necessarily an A-module via the coregular actions,

$$(a \cdot f)(b) = f(ba)$$
 or $(f \cdot a)(b) = f(ab)$

or their α -twisted versions

$$(a \cdot f)(b) = f(b\alpha(a))$$
 or $(f \cdot a)(b) = f(\alpha(a)b)$

Ilva Shaniro Serkan Su

Lemma

Pirsa: 15090056

Given a Hom-associative algebra (A, μ, α) , the pair (A°, Id_{A^*}) where

$$\mathcal{A}^{\circ} = \{ f \in \mathcal{A}^* \mid f(x\alpha(y)) = f(\alpha(xy)) = f(\alpha(x)y) \},$$

is a left A-module via

$$(a\cdot f)(b)=f(b\alpha(a)),$$

for any $a, b \in \mathcal{A}$, and any $f \in \mathcal{A}^{\circ}$. (It is a bimodule)

Ilva Shaniro Serkan

Cohomology theory, Dual module, I.Shapiro, S. Sutlu, M. H (2015)

Definition

Let (\mathcal{A}, α) be a Hom-algebra. A vector space V is called a dual left \mathcal{A} -module if there are linear maps $\cdot : \mathcal{A} \otimes V \longrightarrow V$, and $\beta : V \longrightarrow V$ where

$$a \cdot (\alpha(b) \cdot v) = \beta((ab) \cdot v).$$

Example

Pirsa: 15090056

Let (A, α) be a Hom-algebra, and (V, β) an A-bimodule. Then the algebraic dual V^* is a dual A-bimodule.

Special case: for V = A the A^* is dual bimodule.

History: Between 1976-1978, Connes used Hochschild cohomology of A with coefficients in A^* to classify injective von Neumann algebra.

Ilya Shapiro Serkan Sı

Cyclic cohomology, I.Shapiro, S. Sutlu, M. H (2015)

$$V = \mathcal{A}^*.$$

$$b\phi(a_0 \otimes \cdots \otimes a_{n+1}) = \phi(a_0 a_1 \otimes \alpha(a_2) \otimes \cdots \otimes \alpha(a_{n+1}))$$

$$+ \sum_{j=1}^n (-1)^j \phi(\alpha(a_0) \otimes \cdots \otimes a_j a_{j+1} \otimes \cdots \otimes \alpha(a_{n+1}))$$

$$+ (-1)^{n+1} \phi(a_{n+1} a_0 \otimes \alpha(a_1) \otimes \cdots \otimes \alpha(a_n)).$$

$$\tau_n \phi(a_0 \otimes a_1 \otimes \cdots \otimes a_n) := (-1)^n \phi(a_n \otimes a_0 \otimes a_1 \otimes \cdots \otimes a_{n-1}),$$

$$C^n_{\lambda, Hom}(\mathcal{A}, \mathcal{A}^*) = \ker(Id - \tau)$$

$$= \{\phi \in C^n_{Hom}(\mathcal{A}, \mathcal{A}^*) \mid \phi(a_0 \otimes a_1 \otimes \cdots \otimes a_n)$$

$$= (-1)^n \phi(a_n \otimes a_0 \otimes \cdots \otimes a_{n-1})\}.$$

$$b'(\varphi)(a_0 \otimes \cdots \otimes a_{n+1}) = \sum_{j=0}^{n-1} (-1)^j \varphi(\alpha(a_0) \otimes \cdots \otimes a_j a_{j+1} \otimes \cdots \otimes \alpha(a_n)),$$

 $\mathcal{N}:=\mathit{Id}+ au+\ldots+ au^n: \mathit{C}^n_{\mathit{Hom}}(\mathcal{A}) \longrightarrow \mathit{C}^n_{\mathit{Hom}}(\mathcal{A}).$

Mohammad Hassanzadeh (September 2011 Nonassociative Geometry, Hom-associative

Page 21/23

New Results: non-associative differential calculus I.Shapiro, S. Sutlu, M. H (2015)

Definition

Let (A, α) be a Hom-algebra and (M, β) a dual A-bimodule. The k-linear function $f : A \longrightarrow M$ is called a twisted α -derivation if

$$a_1 f(\alpha(a_2)) + f(\alpha(a_1)) a_2 = \beta(f(a_1 a_2)).$$
 (0.2)

The set of all twisted α -derivations is denoted by $Der_k(\mathcal{A}, M)$.

Lemma

Let (A, α) be a Hom-algebra and (M, β) a dual A-bimodule. The map $f_m : A \longrightarrow M$ given by $f_m(a) = am - ma$ is a twisted α -derivation(called principal derivations).

Ilva Shapiro Serkan S

I.Shapiro, S. Sutlu, M. H (2015)

Proposition

Pirsa: 15090056

Let (A, α) be a Hom-algebra and (M, β) a dual A-bimodule. Then

$$H^1_{Hom}(\mathcal{A},M) = rac{Der_k(\mathcal{A},M)}{PDer_k(\mathcal{A},M)}.$$

