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Abstract: <p>The kinematical framework of canonical loop quantum gravity has mostly been studied in the context of compact Cauchy dlices.
However many key physical notions such as total energy and momentum require the use of asymptoticaly flat boundary conditions (and hence
non-compact slices). We present a quantum kinematics, based on the Koslowski-Sahlmann representation, that successfully incorporates such
asymptotically flat boundary conditions. Based on joint work with Madhavan Varadarajan.</p>
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Motivation

» In GR isolated systems are modeled by asymptotically flat
spacetimes
Bu >Ny a8 r—+oo

(for canonical gravity: r — oo in spatial direction)
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Canonical phase space for asymptotically flat gravity

» 3+1 phase space of gravity in Ashtekar-Barbero variables
Al(x), Ef(x) on non-compact Cauchy slice T
satisfying asymptotic flatness conditions:

Al0, Ef Er as r — oo
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Canonical phase space for asymptotically flat gravity

» 341 phase space of gravity in Ashtekar-Barbero variables
Al(x), E?(x) on non-compact Cauchy slice ¥
satisfying asymptotic flatness conditions:
A0 E'E as r — oo

» additional conditions on subleading terms (Regge-Teitelboim)
= well-defined phase space
= well-defined asymptotic Poincare charges (energy, momentum...)
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Canonical phase space for asymptotically flat gravity

» 341 phase space of gravity in Ashtekar-Barbero variables

Ai(x), E?(x) on non-compact Cauchy slice ¥

satisfying asymptotic flatness conditions:
A0 EoE as r — 0o

additional conditions on subleading terms (Regge-Teitelboim)
well-defined phase space
well-defined asymptotic Poincare charges (energy, momentum...)

how to capture these conditions at quantum level?

———

--""---‘-‘-—
can we have energy , momentum?

Pirsa: 15090010 Page 9/55



Difficulties for an asym flat LQG

» non-compact X — ‘infinitely large’ spin networks
Sahlmann-Thiemann-Winkler '01

mathematically very difficult (infinite tensor product, ...)
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Difficulties for an asym flat LQG

» non-compact X — ‘infinitely large’ spin networks
Sahlmann-Thiemann-Winkler '01
mathematically very difficult (infinite tensor product, ...)

» even then, not clear how to capture asymptotic condition:

EF(x)
¢ I

distributional, smooth
nonzero on 1-d graph

r— >
= FE
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Difficulties for an asym flat LQG

>

non-compact ¥ — ‘infinitely large’ spin networks
Sahlmann-Thiemann-Winkler '01

mathematically very difficult (infinite tensor product, ...)

even then, not clear how to capture asymptotic condition:

E?(x) 2% B
) \

distributional, smooth
nonzero on 1-d graph

one idea could be to redefine E?(x):
Enen(x) = Ega(x) + E7 (*)

Arnsdorf-Gupta '00
but in conflict with main driving pple in LQG:
diffeomorphism covariance
KS representation: makes (x) compatible with diffeo
covariance
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KS representation Koslowski '07, Sahlmann '12

» spin-networks as excitations over a smooth background
geometry h3P

h*® ~ Tr[E?E"]
» background geometry E? as new label of states:
|s) = |E:s)

» Fluxes acquire a contribution from the background geometry

Fs|E;s) = F§9C|E; s) + (/dSaEa)|E;s)
5

Page 13/55



Pirsa: 15090010

KS representation

>

Koslowski '07, Sahlmann '12

spin-networks as excitations over a smooth background

geometry h3P
h*® ~ Tr[E?EP]

background geometry E? as new label of states:
|s) = |E:s)

Fluxes acquire a contribution from the background geometry

Fs|E;s) = F§9C|E; s) + (/dSaEa)|E;s)
5

does not spoil action of diffeos:

IE;s) 2 |6.E; 6(s))

seems well suited to incorporate asym flat conditions
full kinematics: imposition of Diff and SU(2)-gauge invariance
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strategy

1. Develop full KS kinematics (including imposition of Diff and
SU(2) gauge invariance) in case of compact ¥

2. Extend analysis to asym flat case

3. Applications: asymptotic translations and rotations
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KS kinematics: underlying classical algebra

» KS states admit different ‘background’ E-labels:
[Y) = ¢ |E,s) + q|E/,s') +...

» different E labels = ‘background exponential’ operators
(Varadarajan'13)

Bf'Evs) e |E +f:5>

» Such operators can be understood as quantization of classical
phase-space function, “background exponential function”

ﬁf[A] — el’fz Tr[f2A,)

f? = su(2)-valued ‘background’ electric field
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KS kinematics: underlying classical algebra

» KS states admit different ‘background’ E-labels:
[¥) = a|E,s) + c|E/,s') + ...

» different E labels = ‘background exponential’ operators
(Varadarajan'13)

Bf'Evs) o |E + f: 5>
» Such operators can be understood as quantization of classical
phase-space function, “background exponential function”
ﬁf[A] T el’fz Tr[f2A,]

f? = su(2)-valued ‘background’ electric field

» KS representation can be understood as quantization of
Fluxes, Holonomies, Background exponentials

Fs h'y B

Page 17/55



Pirsa: 15090010

Diffeos and SU(2) gauge transformations in LQG

» Nice transformation law of holonomies under diffeos ¢ and
SU(2) gauge transformations g

b mlA] = s A
= hyy)[Al

g mlAl = hg7 Ag+ g dg]
= g (v(1))h[Alg(7(0))
fory:[0,1] = £
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Diffeos and SU(2) gauge transformations in LQG

» Nice transformation law of holonomies under diffeos ¢ and
SU(2) gauge transformations g

b mlA] = s A
= hyy)[Al

g hlAl = hlg™'Ag+g " dg]
= g '(v(1)h[Alg(7(0))
fory:[0,1] = X
> In quantum theory: unitary rep U(¢) and U(g) implementing
such transformation on hy
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Diffeos and SU(2) gauge transformations in LQG

» Nice transformation law of holonomies under diffeos ¢ and
SU(2) gauge transformations g

b mlA] = hs; A
= hyy)[Al

g hlAl = hlg™'Ag+g " dg]
= g '(v(1)h[Alg(7(0))
fory:[0,1] = ¥
> In quantum theory: unitary rep U(¢) and U(g) implementing
such transformation on hy

> Hisng(z): gauge invariant spin-networks

» HPIfF (5] ~ Z (¢(s)| (not normalizable on Hin)

nv °
¢Ediffeos
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X
|
|
|

- l

main Iichncm difference with LQG: SU(2) gauge invariant

vl 2
states [non-normalizable on #kjn

'}{‘5;-1!\,’{;!} (E|5| ~ Z :‘I (& '::[: Eir:
4

(S ki tics can be brougnt level of rigor as L
KS kinematics can D€ brought at level of

kinematics
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KS: diffeomorphism and SU(2) gauge invariance

U(#)|E, 5)
U(g)|E, 5) -

(casa of gauge invariant spin network s)

smorphism and SU(2) gauge invariant Hilbert space M

d fe 4 Jl'!,j:‘ in LQG

main technical difference with LQG: SU(2) gauge invariant
states non-normalizable on Hi
'H,'r:.l,:[:’ i (B8~ }_‘- alorln rn,:g Eg 1._“
£

» KS kinematics can be brought at level of rigor as LQG

kinematics
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|
|

Ich) [ . E )
Ulg)lk, s E

| » main tl-clmc;x! difference with LQG: SU(2) gauge invariant
[

| states fnon-normalizable on Hyin

WY@ . (Es|~) e (gEg 5|

1 3

: ~
» KS kinematics can be brought at level of rigor as LQG

kinematics
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KS: diffeomorphism and SU(2) gauge invariance

U(9)IE,s) = |p«E, &(s))
U(g)|E,s) = e(&E)|gE g1, s)

(case of gauge invariant spin network s)

diffeomorphism and SU(2_) gauge invariant Hilbert space Hiny
constructed following HPT in LQG

nv

main technical difference with LQG: SU(2) gauge invariant
states non-normalizable on Hyi,

SU i -
’Hinv(z) . (E,s| ~ Ze (g’E)(g Egl,s
g

KS kinematics can be brought at level of rigor as LQG
kinematics
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KS: diffeomorphism and SU(2) gauge invariance

U(9)IE,s) = |p«E, &(s))
U(g)|E,s) = e™(&E)|gE g1, s)

(case of gauge invariant spin network s)

diffeomorphism and SU(2_) gauge invariant Hilbert space Hiny
constructed following HPT in LQG

nv

main technical difference with LQG: SU(2) gauge invariant
states non-normalizable on Hy;,

Hiw 22 (Eys|~ ) eolE®igg gt o
g

inv
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KS: diffeomorphism and SU(2) gauge invariance

U(9)IE,s) = |p«E, #(s))
U(g)|E,s) = e(&E)|gE g1, s)

(case of gauge invariant spin network s)

diffeomorphism and SU(2_) gauge invariant Hilbert space Hiny
constructed following HPT in LQG

nv

main technical difference with LQG: SU(2) gauge invariant
states non-normalizable on Hy;,

,HSU(2) : (E, s| ~ Z eia(g,E)(g Eg_1,5|
g

inv

KS kinematics can be brought at level of rigor as LQG
kinematics
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From compact X to asym flat case

» to summarize: we have good control of KS kinematics in case
of compact

» can attempt generalization to asymptotically flat case
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From compact X to asym flat case

to summarize: we have good control of KS kinematics in case
of compact

can attempt generalization to asymptotically flat case

main conceptual difference: distinction between
‘gauge’ diffeomorphisms and

‘non-gauge’ diffeomorphisms = global symmetries
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From compact X to asym flat case

to summarize: we have good control of KS kinematics in case
of compact

can attempt generalization to asymptotically flat case

main conceptual difference: distinction between
‘gauge’ diffeomorphisms and
‘non-gauge’ diffeomorphisms = global symmetries

since we are only treating spatial diffeomorphisms, we can
only discuss Euclidean subgroup of Poincare group (spatial
rotations and translations)
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r~2odd(%) -

condit(ons are such that
1. will-defined symplectic form

/ :'IA_Jt"'f, -/ / drr® ,f

1 "

e| ... convergent when [ dr
e | potential [ drr=* divergence avoided by 9., d*X odd(%)

2 v\l-ll defined asymptotic Poincare group and charges

» Diffeomorphisms preserving asym conditions:

¢*(x) = Rgx® -+ T* + 0dd(X)
L el
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classical functions

» Classical functions to be quantized
Fluxes, Holonomies, Background exponentials

Fs hy B
» S and v bounded and

f2 = r~l(even) +...

so that B¢[A] = e Jr TF*Asl s well-defined
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classical functions

» Classical functions to be quantized
Fluxes, Holonomies, Background exponentials

Fs h, B

» S and v bounded and

f2 = r~l(even) +...

so that B¢[A] = e Jr TF*Asl s well-defined

» well defined action of (gauge and non-gauge) diffeos and
SU(2) transformations

(g! ¢) ) ﬂf = eia(g’tb’f)ﬁgqb*fg—l

o(g, ¢, f) = [ Trip.fig~10.g] < oo
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classical functions

» Classical functions to be quantized
Fluxes, Holonomies, Background exponentials

Fs h, B

» S and v bounded and

f2 = r~l(even) +...

so that B¢[A] = e Jr TF*Asl s well-defined

» well defined action of (gauge and non-gauge) diffeos and
SU(2) transformations

(gv ¢) y ﬂf o eia(g’tb’f)ﬁgqb*fg—l

o(g, ¢, f) = [ Trip.fig~18.g] < oo
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classical functions

» Classical functions to be quantized
Fluxes, Holonomies, Background exponentials

Fs h, B

» S and v bounded and

f2 = r~l(even) +...

so that B¢[A] = e Jx TF*Asl s well-defined

» well defined action of (gauge and non-gauge) diffeos and
SU(2) transformations

(g! ¢) : ﬂf e eia(g’tb’f)ﬁgqb*fg—l

Cli(g, ®, f) — fTr[qb*fag‘laag] < 00
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quantum theory

For simplicity will focus on ‘background labels'
» Hyin spanned by |E) with

E’ = £ + rleven(R) +...

» well defined B¢

B¢|E) = |E +f)
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U(g, )

» We are after U(g, ¢) s.t.
U(ga ¢) Ef UT(ga (b) o eia(g’¢’f)gg¢*fg“1
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U(g,®)

» We are after U(g, ¢) s.t.
U(g, ¢) Ef Uf(ga (b) = eia(g’¢’f)gg¢*fg—1

» Naive copy-paste of compact ¥ formula:

“U(g, ¢)|E) = '*&9E)|gg,Eg—1)"

fails for asymptotic rotations: a(g, ¢, E) = oo
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» Naive

fails for asymptotic rotations: a(g, ¢, E

» divergent contribution is a boundary term

e

a(g, ¢, E) = ./: dS,,Tr[E"g:{: 1+

o OC

£ is an internal SU(2) ‘companion’ of asymptotic rotation
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U(g,®)

» We are after U(g, ¢) s.t.
U(g, ¢) af UT(g: (b) o eia(g’¢’f)gg¢*fg—1

» Naive copy-paste of compact ¥ formula:
“Ug, $)[E) = (6:9F)|gg, E2g~1)"

fails for asymptotic rotations: a(g, ¢, E) = oo

» divergent contribution is a boundary term

S = f d5,Tr(E*g2™"] + (g, 6, E)

o0
finite
g is an internal SU(2) ‘companion’ of asymptotic rotation
» improved guess:

U(g, ¢)|E) = e&9F)|gg,E2g™1)
works! = unitary action of diffeos and SU(2) gauge rotations

15/18
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asym flat KS kinematics

» H;n constructed by group averaging over gauge diffeos and
SU(2) transformations
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asym flat KS kinematics

» H;n constructed by group averaging over gauge diffeos and
SU(2) transformations

» Unitary action of asymptotic Euclidean group on Hiny

» As discussed by Friedman and Sorkin there are two possible
asymptotic groups (depending on topology of )
R3 x SO(3) or R3 x SU(2)

» In the latter case there are odd-spin states on H;,, as
predicted by Friedman-Sorkin '80
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asym flat KS kinematics

» H;n constructed by group averaging over gauge diffeos and
SU(2) transformations

» Unitary action of asymptotic Euclidean group on Hiny

» As discussed by Friedman and Sorkin there are two possible
asymptotic groups (depending on topology of ¥)
R3 x SO(3) or R3 x SU(2)

» In the latter case there are odd-spin states on H;,, as
predicted by Friedman-Sorkin '80
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Comments

» Boundary conditions on connection can be understood by
realizing

Hiin = li< ("1)

> fff given by continuous functions on A
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Comments

» Boundary conditions on connection can be understood by
realizing

Hiin = e ("1)

> fff given by continuous functions on A

» well-definedness of Bf as function on A = “fall-off of
quantum connections”
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Comments

Boundary conditions on connection can be understood by
realizing

Hiin = L2 ("1)

Ef given by continuous functions on A

well-definedness of Bf as function on A = “fall-off of
quantum connections”

important part of technical work went into adapting
Regge- Teitelboim /Beig-O'Murchadha conditions to setting
used in LQG (finite diffeos and semianalytic category)
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Conclusions

» KS kinematics for asymptotically flat gravity at level of rigor
as LQG kinematics
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» KS kinematics for asymptotically flat gravity at level of rigor
as LQG kinematics

» Hiny constructed from gauge diffeos and SU(2) rotations
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Conclusions

» KS kinematics for asymptotically flat gravity at level of rigor
as LQG kinematics

» Hinv constructed from gauge diffeos and SU(2) rotations

» Unitary representation of non-gauge diffeos (rotations and
translations) on Hiny

Friedman-Sorkin ‘spin 1/2 from gravity' idea realized

» Hamiltonian constraint remains open

e Poincare group
e energy positivity
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as LQG kinematics

» Hinv constructed from gauge diffeos and SU(2) rotations

» Unitary representation of non-gauge diffeos (rotations and
translations) on Hiny

Friedman-Sorkin ‘spin 1/2 from gravity' idea realized

» Hamiltonian constraint remains open

e Poincare group
e energy positivity
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Asym flat kinematics: classical considerations

» Classical phase space: Ashtekar-Barbero version of
Regge-Teitelboim '74 and Beig-O'Murchadha '87

A;=r"2odd(%) +..., E?=E?+rleven(%)+...

» conditions are such that
1. well-defined symplectic form:

f&A §E* = /drr f2d2 ~odd(%) +...)
S:

e "..." convergent when [ dr
e potential [ drr~! divergence avoided by §,, d°%odd(X) =0

2. well defined asymptotic Poincare group and charges

» Diffeomorphisms preserving asym conditions:
¢?(x) = Rx® + T2 + odd(x) +.

gauge diffeomorphisms
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Boundary conditions or

realizing

‘!{'-I'I

r -I
F given by continuous functions on A

well-ddfinedness of Ay as function on A

quantym connections”

!
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Comments

» Boundary conditions on connection can be understood by
realizing

Hiin = Jis ("1)

> fff given by continuous functions on A

» well-definedness of Bf as function on A = “fall-off of
quantum connections”
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