Title: Generalized BMS symmetry and subleading soft graviton theorem

Date: Sep 10, 2015 02:30 PM

URL: http://pirsa.org/15090008

Abstract: I will describe a proposal for a generalization of the BMS group in which the conformal isometries of the sphere (Lorentz group) are replaced by arbitrary sphere diffeomorphisms. I describe the computation of canonical charges and show that the associated Ward identities are equivalent to the Cachazo-Strominger subleading soft graviton formula. Based on joint work with Alok Laddha.

Pirsa: 15090008 Page 1/36

Generalized BMS symmetry and subleading soft graviton theorem

Miguel Campiglia

Unversidad de la República, Uruguay

Perimeter Institute, September 10th 2015

Work in collaboration with Alok Laddha (Chennai Mathematical Institute) Phys. Rev. D **90** (2014) 12 and JHEP **1504**, 076 (2015)

1/21

Pirsa: 15090008 Page 2/36

Motivation

- ightharpoonup Over past \sim 2 years revival of BMS group initiated by Strominger and collaborators
- ► New insight: BMS is a (spontaneously broken) symmetry of the gravitational S-matrix
- Resulting constraints on the S-matrix were known in a different disguise: (Poincare invariance and)
 - Weinberg's (leading) soft graviton theorem
- These ideas extend to groups larger than BMS
 - \Rightarrow further constraints on the S-matrix:
 - Cachazo-Strominger (subleading) soft graviton theorem

2/21

Pirsa: 15090008 Page 4/36

Motivation

- ightharpoonup Over past \sim 2 years revival of BMS group initiated by Strominger and collaborators
- ► New insight: BMS is a (spontaneously broken) symmetry of the gravitational S-matrix
- Resulting constraints on the S-matrix were known in a different disguise: (Poincare invariance and)
 - Weinberg's (leading) soft graviton theorem
- These ideas extend to groups larger than BMS
 - \Rightarrow further constraints on the S-matrix:
 - Cachazo-Strominger (subleading) soft graviton theorem
- We will argue that CS soft theorem arises from a novel (spontaneously broken) $Diff(S^2)$ symmetry

2/21

Pirsa: 15090008 Page 5/36

Outline of the talk

- 1. Review:
 - BMS group and BMS charges
 - ▶ BMS in S-matrix and soft gravitons
 - ► CS soft theorem ⇒ Virasoro ⊂ 'extended BMS'
- 2. CS soft theorem \Leftrightarrow Diff(S^2) \subset 'generalized BMS'
 - Generalized BMS group
 - ▶ Diff(S²) charges
 - Equivalence
- 3. Final comments

3/21

Pirsa: 15090008 Page 6/36

Asymptotically flat spacetimes at null infinity (BMS 1962)

▶ 1/r expansion of spacetime metric off null infinity in Bondi coordinates (r, u, x^A) :

$$ds^2 = -du^2 - 2dudr + [r^2 \mathring{q}_{AB} + r C_{AB}(u, \hat{x})]dx^A dx^B + \dots$$

 $\dot{q}_{AB} \equiv \text{metric of the unit sphere}$

Bondi gauge:
$$g_{rr} = g_{rA} = 0$$
, $\sqrt{\det g_{AB}} = r^2 \sqrt{\det \mathring{q}_{AB}}$

4/21

Asymptotically flat spacetimes at null infinity (BMS 1962)

▶ 1/r expansion of spacetime metric off null infinity in Bondi coordinates (r, u, x^A) :

$$ds^2 = -du^2 - 2dudr + [r^2 \mathring{q}_{AB} + r C_{AB}(u, \hat{x})]dx^A dx^B + \dots$$

 $\mathring{q}_{AB} \equiv$ metric of the unit sphere Bondi gauge: $g_{rr} = g_{rA} = 0$, $\sqrt{\det g_{AB}} = r^2 \sqrt{\det \mathring{q}_{AB}}$

- ► $C_{AB}(u, \hat{x})$ unconstrained by Einstein equations ⇒ "free data"
- "..." determined by $C_{AB}(u,\hat{x})$ through Einstein equations

4/21

Asymptotically flat spacetimes at null infinity (BMS 1962)

▶ 1/r expansion of spacetime metric off null infinity in Bondi coordinates (r, u, x^A) :

$$ds^2 = -du^2 - 2dudr + [r^2 \mathring{q}_{AB} + r C_{AB}(u, \hat{x})]dx^A dx^B + \dots$$

 $\mathring{q}_{AB} \equiv \text{metric of the unit sphere}$ Bondi gauge: $g_{rr} = g_{rA} = 0$, $\sqrt{\det g_{AB}} = r^2 \sqrt{\det \mathring{q}_{AB}}$

- ► $C_{AB}(u, \hat{x})$ unconstrained by Einstein equations ⇒ "free data"
- "..." determined by $C_{AB}(u,\hat{x})$ through Einstein equations
- $\mathring{q}^{AB}C_{AB}=0 \Rightarrow 2$ independent components $\leftrightarrow 2$ polarizations of gravitational waves

4/21

Pirsa: 15090008 Page 10/36

(Bondi, van der Burg, Metzner; Sachs 1962)

Asymptotic Killing symmetries of

$$ds^2 = -du^2 - 2dudr + (r^2 \mathring{q}_{AB} + r C_{AB})dx^A dx^B + \dots$$

▶ Seek (nontrivial) ξ^a satisfying $\mathcal{L}_\xi ds^2 \to 0$

5/21

(Bondi, van der Burg, Metzner; Sachs 1962)

Asymptotic Killing symmetries of

$$ds^2 = -du^2 - 2dudr + (r^2 \mathring{q}_{AB} + r C_{AB})dx^A dx^B + \dots$$

- ▶ Seek (nontrivial) ξ^a satisfying $\mathcal{L}_{\xi} ds^2 \to 0$
- ▶ 2 families of solutions:

$$\xi_f^a = f(\hat{x})\partial_u + \ldots,$$

1) $f(\hat{x})$ arbitrary function on S^2 : 'supertranslations' ST

(Bondi, van der Burg, Metzner; Sachs 1962)

Asymptotic Killing symmetries of

$$ds^2 = -du^2 - 2dudr + (r^2 \mathring{q}_{AB} + r C_{AB})dx^A dx^B + \dots$$

- ▶ Seek (nontrivial) ξ^a satisfying $\mathcal{L}_{\xi} ds^2 \to 0$
- ▶ 2 families of solutions:

$$\xi_f^a = f(\hat{x})\partial_u + \dots,$$

1) $f(\hat{x})$ arbitrary function on S^2 : 'supertranslations' ST Translation subgroup $T \subset ST$: $f(\hat{x}) = 1, \hat{x}_1, \hat{x}_2, \hat{x}_3$

(Bondi, van der Burg, Metzner; Sachs 1962)

Asymptotic Killing symmetries of

$$ds^2 = -du^2 - 2dudr + (r^2 \mathring{q}_{AB} + r C_{AB})dx^A dx^B + \dots$$

- ▶ Seek (nontrivial) ξ^a satisfying $\mathcal{L}_{\xi} ds^2 \to 0$
- ▶ 2 families of solutions:

$$\xi_f^a = f(\hat{x})\partial_u + \dots, \qquad \xi_V^a = V^A(\hat{x})\partial_A + 2u(D \cdot V)\partial_u + \dots$$

- 1) $f(\hat{x})$ arbitrary function on S^2 : 'supertranslations' ST Translation subgroup $T \subset ST$: $f(\hat{x}) = 1, \hat{x}_1, \hat{x}_2, \hat{x}_3$
- 2) $V^A(\hat{x})$ CKV vector fields \Rightarrow Conf(S^2) \approx Lorentz group (later to be generalized)

 \Rightarrow asymptotic isometries \equiv ST \rtimes Conf(S^2) =: BMS

(compare with Poincare $\equiv T \rtimes Lorentz$)

5/21

BMS charges

(Ashtekar, Streubel 1981)

 \blacktriangleright on space of free data at ${\cal I}$

$$\Gamma^{(\dot{q})} = \{ C_{AB}(u, \hat{x}) : \dot{q}^{AB} C_{AB} = 0 \}$$

there is a natural symplectic form Ω that makes $\Gamma^{(\mathring{q})}$ a phase space ("radiative phase space")

6/21

BMS charges

(Ashtekar, Streubel 1981)

ightharpoonup on space of free data at ${\mathcal I}$

$$\Gamma^{(\dot{q})} = \{ C_{AB}(u, \hat{x}) : \dot{q}^{AB} C_{AB} = 0 \}$$

there is a natural symplectic form Ω that makes $\Gamma^{(q)}$ a phase space ("radiative phase space")

▶ action of BMS is symplectic wrt $\Omega \Rightarrow$ canonical charges Q_{ξ} for $\xi^a \in$ BMS:

$$\delta Q_{\xi} = \Omega(\delta, \delta_{\xi}) \, \forall \delta$$

BMS charges

(Ashtekar, Streubel 1981)

ightharpoonup on space of free data at ${\cal I}$

$$\Gamma^{(\dot{q})} = \{ C_{AB}(u, \hat{x}) : \dot{q}^{AB} C_{AB} = 0 \}$$

there is a natural symplectic form Ω that makes $\Gamma^{(a)}$ a phase space ("radiative phase space")

▶ action of BMS is symplectic wrt $\Omega \Rightarrow$ canonical charges Q_{ξ} for $\xi^a \in$ BMS:

$$\delta Q_{\xi} = \Omega(\delta, \delta_{\xi}) \, \forall \delta$$

▶ For supertranslations ξ_f^a :

$$\delta_f C_{AB} = f \partial_u C_{AB} - 2D_A D_B f \Rightarrow Q_f = Q_f^{\mathsf{hard}} + Q_f^{\mathsf{soft}}$$

$$Q_f^{\mathsf{hard}} = \mathsf{quadratic} \; \mathsf{in} \; C_{AB} \qquad \qquad Q_f^{\mathsf{soft}} = \mathsf{linear} \; \mathsf{in} \; C_{AB}$$

BMS as symmetry of the S-matrix

(Strominger 2013)

- ► 'Diagonal' subgroup of BMS⁺ × BMS⁻ a symmetry of the classical gravitational scattering problem
- Quantum version of diagonal ST symmetry:

$$[\hat{Q}_f, \mathcal{S}] = \hat{Q}_f^+ \mathcal{S} - \mathcal{S} \hat{Q}_f^- = 0$$
 (*)

7/21

Subleading soft graviton theorem and extended BMS

CS subleading soft graviton formula (Cachazo, Strominger 2014)

$$\lim_{\lambda o 0} \partial_\lambda \lambda \, \mathcal{M}(\lambda q; p_1, \dots, p_n) = \sum_{i=1}^n (q.p_i)^{-1} \epsilon_{\mu
u} p_i^\mu q_
ho J_i^{
ho
u} \mathcal{M}(p_1, \dots, p_n)$$

▶ Motivated by 'extended BMS': (Barnich, Troessaert 2010) allow poles in BMS $V^A \to \text{infinitely many local CKV's } \tilde{V}$ in (z, \bar{z}) coordinates on S^2 where $\mathring{q}_{AB} \propto dzd\bar{z}$

$$\tilde{V} = \tilde{V}^z(z)\partial_z + \tilde{V}^{\bar{z}}(\bar{z})\partial_{\bar{z}}$$

CS formula
$$\Rightarrow [\hat{Q}_{\tilde{V}}, \mathcal{S}] = 0$$

Kapec, Lysov, Pasterski, Strominger (2014)

CS formula \Leftarrow ?

can we obtain a 1-to-1 correspondence as in Weinberg formula $\Leftrightarrow [Q_f, \mathcal{S}] = 0$?

Virasoro Ward identities

Kapek et.al.'14

Follow same procedure as in derivation of ST Ward identities:

1. Fock space of asymptotic gravitons:

$$|\vec{p}_1h_1,\ldots\vec{p}_mh_m\rangle=a^{\dagger}_{h_1}(\vec{p}_m)\ldots a^{\dagger}_{h_m}(\vec{p}_m)|0\rangle$$

2. Write $\hat{Q}_{\tilde{V}}$ in terms of Fock operators

$$C_{zz}(u,\hat{x})\sim\int dE~a_+(ec{p}=E\hat{x})e^{-iEu}$$

3. Evaluate matrix element of

$$[\hat{Q}_{ ilde{V}},\mathcal{S}]=0$$

between

$$\langle \mathsf{out} | = \langle \vec{p}_1 h_1, \dots \vec{p}_m h_m |, \qquad |\mathsf{in} \rangle = |\vec{p}_{m+1} h_{m+1}, \dots \vec{p}_n h_n \rangle$$

Resulting Ward Id takes the form:

"
$$\int d^2z \, \partial_z^3 \tilde{V}^z \times (\vec{q}(z,\bar{z}) \text{ CS formula})$$
"

CS formula ←?

By reverse engineering one finds CS formula seems to arise from a Ward Id associated to a non-CKV

$$V=(z-w)^{-1}(\bar{z}-\bar{w})^2\partial_{\bar{z}}$$

▶ Can we make sense of non-CKV V^A ?

12/21

CS formula ←?

By reverse engineering one finds CS formula seems to arise from a Ward Id associated to a non-CKV

$$V=(z-w)^{-1}(\bar{z}-\bar{w})^2\partial_{\bar{z}}$$

- ▶ Can we make sense of non-CKV V^A ?
- First hint of positive answer: If we replace

$$\tilde{V}^z(z) \to V^z(z,\bar{z}), \quad \tilde{V}^{\bar{z}}(z) \to V^{\bar{z}}(z,\bar{z})$$

in expression of Virasoro charges

$$Q_{ ilde{V}} o Q_V$$

then all steps in "CS formula \Rightarrow Virasoro Ward Id" go through !

▶ Only place CKV condition used is in the derivation of the charges $Q_{\tilde{V}}$

12 / 21

Pirsa: 15090008 Page 22/36

Asymptotically flat spacetimes in 'non-Bondi frame':

Barnich and Troessaert 2010

$$ds^{2} = -\mathcal{R}/2du^{2} - 2dudr + (r^{2}q_{AB} + r C_{AB})dx^{A}dx^{B} + \dots (\star)$$

- Still Bondi gauge but q_{AB} arbitrary (u-independent) sphere metric
- 'Bondi frame': $q_{AB} = \mathring{q}_{AB} \Rightarrow \mathcal{R} = 2$.

13/21

Pirsa: 15090008 Page 23/36

Asymptotically flat spacetimes in 'non-Bondi frame':

Barnich and Troessaert 2010

$$ds^{2} = -\mathcal{R}/2du^{2} - 2dudr + (r^{2}q_{AB} + r C_{AB})dx^{A}dx^{B} + \dots (\star)$$

- Still Bondi gauge but q_{AB} arbitrary (u-independent) sphere metric
- 'Bondi frame': $q_{AB} = \mathring{q}_{AB} \Rightarrow \mathcal{R} = 2$.
- ▶ Vector fields that preserve form of (\star) allowing $\delta q_{AB} \neq 0$:

13/21

Pirsa: 15090008 Page 24/36

Asymptotically flat spacetimes in 'non-Bondi frame':

Barnich and Troessaert 2010

$$ds^{2} = -\mathcal{R}/2du^{2} - 2dudr + (r^{2}q_{AB} + r C_{AB})dx^{A}dx^{B} + \dots (\star)$$

- Still Bondi gauge but q_{AB} arbitrary (u-independent) sphere metric
- 'Bondi frame': $q_{AB} = \mathring{q}_{AB} \Rightarrow \mathcal{R} = 2$.
- ▶ Vector fields that preserve form of (*) allowing $\delta q_{AB} \neq 0$:

$$\xi_f^a = f(\hat{x})\partial_u + \dots, \qquad \xi_V^a = V^A(\hat{x})\partial_A + 2u(D \cdot V)\partial_u + \dots$$

as in BMS but no restriction on V^A

$$\Rightarrow$$
 ST \rtimes Diff(S^2) =: \mathcal{G}

• $\delta_V q_{AB} \equiv \mathcal{L}_V q_{AB} - (D \cdot V) q_{AB} = 0 \Leftrightarrow V^A \mathsf{CKV}$

13 / 21

Pirsa: 15090008 Page 25/36

Asymptotically flat spacetimes in 'non-Bondi frame':

Barnich and Troessaert 2010

$$ds^{2} = -\mathcal{R}/2du^{2} - 2dudr + (r^{2}q_{AB} + r C_{AB})dx^{A}dx^{B} + \dots (\star)$$

- Still Bondi gauge but q_{AB} arbitrary (u-independent) sphere metric
- 'Bondi frame': $q_{AB} = \mathring{q}_{AB} \Rightarrow \mathcal{R} = 2$.
- ▶ Vector fields that preserve form of (*) allowing $\delta q_{AB} \neq 0$:

$$\xi_f^a = f(\hat{x})\partial_u + \dots, \qquad \xi_V^a = V^A(\hat{x})\partial_A + 2u(D \cdot V)\partial_u + \dots$$

as in BMS but no restriction on V^A

$$\Rightarrow$$
 ST \rtimes Diff(S^2) =: \mathcal{G}

- $\delta_V q_{AB} \equiv \mathcal{L}_V q_{AB} (D \cdot V) q_{AB} = 0 \Leftrightarrow V^A \mathsf{CKV}$
- spacetime characterization: $\nabla_a \xi^a \to 0$

Action of \mathcal{G}

▶ Under action of V^A :

$$\Gamma(\mathring{q}_{AB}) \rightarrow \Gamma(\mathring{q}_{AB} + \delta_V \mathring{q}_{AB})$$

▶ Need to work in larger space:

$$\Gamma:=\{(q_{AB},C_{AB}):q^{AB}C_{AB}=0\}$$
 (with $\partial_u q_{AB}=0$ and $\sqrt{q}=\sqrt{\hat{q}}$)

- ▶ Well-defined action of \mathcal{G} on Γ . But Γ not a symplectic space!
- ▶ Idea: try to find symplectic product on Γ from covariant phase space Ω^{cov}

14/21

Pirsa: 15090008 Page 27/36

Computation of $Diff(S^2)$ charges

▶ We seek symplectic product from covariant phase space:

$$\Omega^{
m cov}(\delta,\delta') = rac{1}{2} \int_{\Sigma} dS_a ig(\delta(\sqrt{g} g^{ab}) \delta' \Gamma^c_{cb} - \delta(\sqrt{g} g^{bc}) \delta' \Gamma^a_{bc} - \delta \leftrightarrow \delta' ig)$$

by taking $\Sigma o \mathcal{I}$ with δg_{ab} in terms of δq_{AB} and $\delta \mathcal{C}_{AB}$

15 / 21

Pirsa: 15090008 Page 28/36

Computation of $Diff(S^2)$ charges

▶ We seek symplectic product from covariant phase space:

$$\Omega^{
m cov}(\delta,\delta') = rac{1}{2} \int_{\Sigma} dS_a ig(\delta(\sqrt{g} g^{ab}) \delta' \Gamma^c_{cb} - \delta(\sqrt{g} g^{bc}) \delta' \Gamma^a_{bc} - \delta \leftrightarrow \delta' ig)$$

by taking $\Sigma \to \mathcal{I}$ with δg_{ab} in terms of δq_{AB} and δC_{AB}

For $\delta q_{AB} = 0$ procedure known to reproduce Ω on $\Gamma^{(\mathring{q}_{AB})}$ (Ashtekar, Magnon 1982)

15/21

Pirsa: 15090008 Page 29/36

Computation of Diff(S^2) charges

▶ We seek symplectic product from covariant phase space:

$$\Omega^{
m cov}(\delta,\delta') = rac{1}{2} \int_{\Sigma} dS_a ig(\delta(\sqrt{g} g^{ab}) \delta' \Gamma^c_{cb} - \delta(\sqrt{g} g^{bc}) \delta' \Gamma^a_{bc} - \delta \leftrightarrow \delta' ig)$$

by taking $\Sigma \to \mathcal{I}$ with δg_{ab} in terms of δq_{AB} and δC_{AB}

- For $\delta q_{AB}=0$ procedure known to reproduce Ω on $\Gamma^{(\mathring{q}_{AB})}$ (Ashtekar, Magnon 1982)
- ▶ well defined $\Sigma \to \mathcal{I}$ limit for defining equation of Q_V :

$$\delta Q_V = \Omega^{\mathsf{cov}}(\delta, \delta_V) \ \forall \delta \in \Gamma^{(\mathring{q}_{AB})}$$
 (*)

$$\delta_V = (\delta_V q_{AB}, \delta_V C_{AB}), \qquad \delta_V C_{AB} = \delta_V^{\text{lin}} C_{AB} - u D_A D_B D \cdot V$$

lacktriangledown can solve (\star) for $Q_V \Rightarrow Q_V = Q_V^{\mathsf{hard}} + Q_V^{\mathsf{soft}}$

15 / 21

Pirsa: 15090008 Page 30/36

$Diff(S^2)$ Charges

$$Q_V^{\mathsf{hard}} = rac{1}{4} \int_{\mathcal{T}} \partial_u \mathcal{C}^{AB} \delta_V^{\mathsf{lin}} \mathcal{C}_{AB}$$

same expression as Virasoro $Q^{\mathsf{hard}}_{ ilde{V}}$ (with $ilde{V} o V$) $\qquad \checkmark$

•

$$Q_V^{\mathsf{soft}} = rac{1}{2} \int_{\mathcal{I}} \ \mathit{C}^{AB} \mathit{s}_{AB}$$

with

$$s_{AB} = D_A D_B D \cdot V - \frac{1}{2} D_{(A} D^C \delta_V q_{B)C} + D_{(A} V_{B)}$$

• going to (z, \bar{z}) coords:

$$s_{zz} = \partial_z^3 V^z, \quad s_{\bar{z}\bar{z}} = \partial_{\bar{z}}^3 V^{\bar{z}}$$

 \Rightarrow $Q_V^{
m soft}$ matches with with Virasoro $Q_{ ilde{V}}^{
m soft}$! \checkmark

this explains why naive replacement $Q_{\widetilde{V}} o Q_V$ worked

$Diff(S^2)$ Ward Identities

Follow same steps as Virasoro case:

1. Write quantum charges in terms of Fock operators

$$\hat{Q}_V^{\mathsf{hard}} | ec{p}, h
angle = -i \mathbf{J}_V^{ec{p},h} | ec{p}, h
angle$$

$$\hat{Q}_V^{\rm soft} = \frac{1}{4\pi i} \lim_{E \to 0} \partial_E E \int d^2 z \left[\partial_{\bar{z}}^3 V^{\bar{z}} a_+(E,z) + \partial_z^3 V^z a_-(E,z) \right]$$

2. Evaluate matrix element of $[\hat{Q}_V, \mathcal{S}] = 0$:

$$\langle \vec{p}_1 h_1; \dots | [\hat{Q}_V^{\mathsf{soft}}, \mathcal{S}] | \dots, \vec{p}_n h_n \rangle = - \langle \vec{p}_1 h_1, \dots | [\hat{Q}_V^{\mathsf{hard}}, \mathcal{S}] | \dots, \vec{p}_n h_n \rangle$$

$$\lim_{E\to 0} \partial_E E \int \frac{d^2z}{4\pi} \left(\partial_{\bar{z}}^3 V^{\bar{z}} \mathcal{M}_{n+1}^+ + \partial_z^3 V^z \mathcal{M}_{n+1}^- \right) = \sum_{i=1}^n \mathbf{J}_V^{\vec{p}_i,h_i} \mathcal{M}_n$$

$$\mathcal{M}_n \equiv \langle \vec{p}_1 h_1; \dots | \mathcal{S} | \dots, \vec{p}_n h_n \rangle$$

17 / 21

$Diff(S^2)$ Ward Id \Leftrightarrow CS soft theorem

$$\lim_{E\to 0} \partial_E E \int \frac{d^2z}{4\pi} \left(\partial_{\bar{z}}^3 V^{\bar{z}} \mathcal{M}_{n+1}^+ + \partial_z^3 V^z \mathcal{M}_{n+1}^- \right) = \sum_{i=1}^n \mathbf{J}_V^{\vec{p}_i,h_i} \mathcal{M}_n$$

Take

$$V = (z - w)^{-1}(\bar{z} - \bar{w})^2 \partial_{\bar{z}} =: K_{(w,\bar{w})}$$

On LHS use:

$$\partial_{\bar{z}}^3 K_{(w,\bar{w})}^{\bar{z}} = 4\pi \delta^{(2)}(z-w)$$

On RHS use:

$$\mathbf{J}_{K_{(w,ar{w})}}^{ec{
ho},h}=(q.p)^{-1}\epsilon_{\mu
u}^{+}p^{\mu}q_{
ho}J^{
ho
u}$$

$$q^\mu = (1, \hat{q}(w, \bar{w}))$$

CS formula is recovered!

$$\lim_{E o 0}\partial_E E\mathcal{M}_{n+1}^+ = \sum_{i=1}^n (q.p_i)^{-1}\epsilon_{\mu\nu}^+ p_i^\mu q_
ho J_i^{
ho
u}\mathcal{M}_n$$

18 / 21

Space of vacua and symmetry breaking: Diff(S^2)

- ▶ Larger space of vacua: $\{(q_{AB}, N_{AB} = 0)\} \in \Gamma$
- ▶ one can show that under *G*:

$$(q_{AB}, N_{AB} = 0) \rightarrow (q'_{AB}, N_{AB} = 0)$$

- lacktriangle Each classical vacuum invariant under a Poincare $\subset \mathcal{G}$
- ▶ In quantum theory *G* broken down to Poincare:

$$\mathcal{G} \to \mathsf{BMS} \to \mathsf{Poincare}$$

'Subleading' soft gravitons as Goldstone modes of

$$\mathcal{G} \to \mathsf{BMS}$$
 (Diff(S^2) $\to \mathsf{Conf}(S^2)$)

'Leading' soft gravitons as Goldstone modes

$$\mathsf{BMS} \to \mathsf{Poincare} \qquad (\mathsf{ST} \to \mathsf{T})$$

Conclusions

Group of asymptotic symmetries

$$\mathcal{G} = \mathsf{ST} \rtimes \mathsf{Diff}(S^2)$$

accounts for
$$M_{n+1} = \left(E_s^{-1}S^{(0)} + S^{(1)}\right)\mathcal{M}_n + O(E_s)$$

21/21

Pirsa: 15090008 Page 35/36

Conclusions

Group of asymptotic symmetries

$$\mathcal{G} = \mathsf{ST} \rtimes \mathsf{Diff}(S^2)$$

accounts for
$$M_{n+1} = \left(E_s^{-1}S^{(0)} + S^{(1)}\right)\mathcal{M}_n + O(E_s)$$

- ▶ *G* spontaneously broken to Poincare: soft gravitons as associated Goldstone modes
- Analysis can be extended to massive particles
- ► To do
 - Symmetries in IR finite S-matrix [Kulish-Faddeev (1970), Ashtekar (1981), Ware-Saotome-Akhoury (2013)]
 - Better understanding of classical conservation law
 [ST: "conservation of energy at every angle" Strominger (2013)]
 - Higher dimensions ?
 [ST: Kapec, Lysov, Pasterski Strominger (2015)]

. . . .

21 / 21

Pirsa: 15090008 Page 36/36