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Abstract: <p>I will describe a proposal for a generalization of the BMS group in which the conformal isometries of the sphere (Lorentz group) are
replaced by arbitrary sphere diffeomorphisms. | describe the computation of canonical charges and show that the associated Ward identities are
equivalent to the Cachazo-Strominger subleading soft graviton formula. Based on joint work with Alok Laddha.</p>
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Motivation

Over past ~ 2 years revival of BMS group initiated by
Strominger and collaborators

New insight: BMS is a (spontaneously broken) symmetry of
the gravitational S-matrix

Resulting constraints on the S-matrix were known in a
different disguise: (Poincare invariance and)

e Weinberg's (leading) soft graviton theorem

These ideas extend to groups larger than BMS
= further constraints on the S-matrix:
e Cachazo-Strominger (subleading) soft graviton theorem
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Motivation

» Over past ~ 2 years revival of BMS group initiated by
Strominger and collaborators

» New insight: BMS is a (spontaneously broken) symmetry of
the gravitational S-matrix

» Resulting constraints on the S-matrix were known in a
different disguise: (Poincare invariance and)

e Weinberg's (leading) soft graviton theorem

» These ideas extend to groups larger than BMS
= further constraints on the S-matrix:
e Cachazo-Strominger (subleading) soft graviton theorem

» We will argue that CS soft theorem arises from a novel
(spontaneously broken) Diff(5?) symmetry
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Outline of the talk

1. Review:
» BMS group and BMS charges
» BMS in S-matrix and soft gravitons
» CS soft theorem = Virasoro C ‘extended BMS’

2. CS soft theorem < Diff(52) C ‘generalized BMS'
» Generalized BMS group
» Diff(S?) charges
» Equivalence

3. Final comments
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Asymptotically flat spacetimes at null infinity  (BMS 1962)

» 1/r expansion of spacetime metric off null infinity in Bondi
coordinates (r, u, x*):

ds®> = —du® — 2dudr + [r*gag + r Cap(u, X)]dx dx® + ...

gas = metric of the unit sphere
Bondi gauge: g = ga =0, +/detgap = r?\/detqas
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Asymptotically flat spacetimes at null infinity  (BMS 1962)

» 1/r expansion of spacetime metric off null infinity in Bondi
coordinates (r, u, x):

ds® = —du® — 2dudr + [Pgag + r Cas(u, %)]dx dx® + ...
gas = metric of the unit sphere

Bondi gauge: g = ga =0, +/detgap = r\/detqas

» Cag(u, X) unconstrained by Einstein equations
= “free data”

» “..." determined by Cag(u,X) through Einstein equations
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Asymptotically flat spacetimes at null infinity  (BMS 1962)

» 1/r expansion of spacetime metric off null infinity in Bondi
coordinates (r, u, x):

ds® = —du® — 2dudr + [rPgag + r Cas(u, %)]dxdx® + ...
gas = metric of the unit sphere

Bondi gauge: g = ga =0, +/detgap = r?\/detqas

Cag(u, X) unconstrained by Einstein equations
= “free data”

“..." determined by Cag(u, X) through Einstein equations

4B Cag = 0 = 2 independent components <> 2 polarizations
of gravitational waves
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BMS group (Bondi, van der Burg, Metzner; Sachs 1962)

» Asymptotic Killing symmetries of
ds® = —du® — 2dudr + (rzé’;AB +r CAB)dxAde +...
» Seek (nontrivial) £2 satisfying L¢ds? — 0
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BMS group (Bondi, van der Burg, Metzner; Sachs 1962)

» Asymptotic Killing symmetries of

ds® = —du® — 2dudr + (rzé’;,qg +r CAB)dxAde +...

» Seek (nontrivial) £2 satisfying L¢ds? — 0

» 2 families of solutions:
£ =Ff(R)o,+...,

1) f(X) arbitrary function on S?: ‘supertranslations’ ST
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BMS group (Bondi, van der Burg, Metzner; Sachs 1962)

» Asymptotic Killing symmetries of
ds® = —du® — 2dudr + (r2&A3 +r CAB)dxAde +...
» Seek (nontrivial) £2 satisfying L¢ds? — 0

» 2 families of solutions:
=X, t...,

1) f(%) arbitrary function on S?: ‘supertranslations’ ST
Translation subgroup T C ST: f(X) =1, %1, %, X3
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BMS group (Bondi, van der Burg, Metzner; Sachs 1962)

» Asymptotic Killing symmetries of
ds® = —du® — 2dudr + (rzé’;,qg +r CAB)dxAde +...
» Seek (nontrivial) £2 satisfying L¢ds? — 0

» 2 families of solutions:

E2=Ff(R)+..., & =VAR)Ba+2u(D V)O,+...

1) f(%) arbitrary function on S?: ‘supertranslations’ ST
Translation subgroup T C ST: f(X) =1, %1, %, X3

2) VA(X) CKV vector fields = Conf(5?) ~ Lorentz group
(later to be generalized)

= asymptotic isometries = ST x Conf(5?) =: BMS

(compare with Poincare = T x Lorentz)
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BMS charges (Ashtekar, Streubel 1981)

» on space of free data at Z

M@ = {Cap(u,%) : §*®Cag = 0}

there is a natural symplectic form 2
that makes (@ a phase space (“radiative phase space”)
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BMS charges (Ashtekar, Streubel 1981)

» on space of free data at Z
r® = {Cap(u, %) : §*BCap = 0}
there is a natural symplectic form Q2

that makes (@) a phase space (“radiative phase space”)

» action of BMS is symplectic wrt {2 = canonical charges Q¢
for £2 € BMS:

5Qe = Q(5, 5¢) V6
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BMS charges (Ashtekar, Streubel 1981)

» on space of free data at Z

M@ = {Ca(u,%) : §*®Cag = 0}

there is a natural symplectic form 2
that makes (@ a phase space (“radiative phase space”)

» action of BMS is symplectic wrt {2 = canonical charges Q¢
for €2 € BMS:

5Qe = Q(5, 8¢) V6

» For supertranslations &7:

0rCag = f8,Cap — 2DaDf = | Qr = QP + Q"

Qpd = quadratic in Cap Q5™ = linear in Cag
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BMS as symmetry of the S-matrix (Strominger 2013)

» ‘Diagonal’ subgroup of BMS™ x BMS™ a symmetry of the
classical gravitational scattering problem

» Quantum version of diagonal ST symmetry:

[Qr, 8] = QFf S —SQF =0
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Subleading soft graviton theorem and extended BMS

» CS subleading soft graviton formula (Cachazo, Strominger 2014)

n
lim O\AM(AG; 1, -, Pn) = Y (q-p) repplqpd* Mpy, ..., pn)
i=1

» Motivated by ‘extended BMS': (Barnich, Troessaert 2010)
allow poles in BMS VA — infinitely many local CKV's V
in (z,2) coordinates on S? where §ap x dzdz

V = V3(2)8, + V*(2)0;

CS formula = [Qy,S] =0
Kapec, Lysov, Pasterski, Strominger (2014)

CS formula <= ?

can we obtain a 1-to-1 correspondence as in
Weinberg formula < [Qf, S] = 07
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Virasoro Ward identities Kapek et.al.'14

Follow same procedure as in derivation of ST Ward identities:
1. Fock space of asymptotic gravitons:

|Bubs, - - . Brobim) = @}, (Bm) .- - &}, (Bm)|O)

2. Write Q\-, in terms of Fock operators

i~ f dE a..(F = ER)a~"E"

3. Evaluate matrix element of
[Q\"/,Sl =0

between
<°Ut| o (51’71: aiaie 5mhm|: ||n) — |5m+1hm+1’

Resulting Ward |d takes the form:

g / d’z92V* x(§(z,z) CS formula) "
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CS formula & ?

» By reverse engineering one finds CS formula seems to arise
from a Ward Id associated to a non-CKV

V= (z-w)}(z-w)%0;

» Can we make sense of non-CKV VA?
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CS formula & ?

» By reverse engineering one finds CS formula seems to arise
from a Ward Id associated to a non-CKV

V =(z-w)}(z - w)%0;

» Can we make sense of non-CKV VA?
» First hint of positive answer: If we replace

V2 (2] V(= o e (e (o)

in expression of Virasoro charges
Qy — Qv

then all steps in “CS formula = Virasoro Ward Id" go
through !

» Only place CKV condition used is in the derivation of the
charges Qy,
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Generalized BMS group G

» Asymptotically flat spacetimes in ‘non-Bondi frame':
Barnich and Troessaert 2010

ds? = —R/2du? —2dudr + (r’qag +r Cag)dx?dx® +... (x)

e Still Bondi gauge but gag arbitrary (u-independent) sphere metric
e 'Bondi frame': qag = ag = R = 2.
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Generalized BMS group G

» Asymptotically flat spacetimes in ‘non-Bondi frame':
Barnich and Troessaert 2010

ds® = —R/2du® — 2dudr + (r’qag +r Cag)dxdx® +... (%)
e Still Bondi gauge but gapg arbitrary (u-independent) sphere metric
e '‘Bondi frame': qag = gag = R = 2.

» Vector fields that preserve form of (%) allowing dgag # O:
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Generalized BMS group G

» Asymptotically flat spacetimes in ‘non-Bondi frame':
Barnich and Troessaert 2010

ds® = —R/2du® — 2dudr + (r’qag +r Cag)dxdxB +... (%)
e Still Bondi gauge but gapg arbitrary (u-independent) sphere metric
e '‘Bondi frame': gag = gag = R = 2.

» Vector fields that preserve form of (%) allowing dgag # O:
2 =Ff(R)0u+..., &4 =VAR)Oa+2u(D V)Oy+...
as in BMS but no restriction on VA

= ST x Diff(52) =: g

® dvqas = Lvqas — (D V)gag =0 & VA CKV
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Generalized BMS group G

» Asymptotically flat spacetimes in ‘non-Bondi frame':
Barnich and Troessaert 2010

ds? = —R/2du?® —2dudr + (r’qag +r Cag)dx?dx® +... (x)

e Still Bondi gauge but gag arbitrary (u-independent) sphere metric
e 'Bondi frame': qag = gag = R = 2.

» Vector fields that preserve form of (%) allowing dgag # O:
2 =Ff(R)0u+..., &/ =VAR)Oa+2u(D V)oy+...
as in BMS but no restriction on VA

= ST x Diff(52) =: g

® dvqas = Lvqas — (D V)gqag =0 & VA CKV

» spacetime characterization: V62 — 0
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Action of §

Under action of VA:

r(@as) _y (4a8+dvaas)

Need to work in larger space:

:={l(q45,Cip)ilq = Cis—10]

(with 8,948 =0 and \/q = 1/§)
Well-defined action of G on I'. But I not a symplectic space!

Idea: try to find symplectic product on ' from covariant phase
space 2°°V
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Computation of Diff(5?) charges

» We seek symplectic product from covariant phase space:

(6,8 = 3 jz 45, (5(v/28™)8' TS, — 6(/88" )0, — 6 © &)

by taking ¥ — Z with dg,p in terms of dgag and dCxp
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Computation of Diff(5?) charges

» We seek symplectic product from covariant phase space:

@(5,8) = /E 45, (5(v/88™)F' TS, — (/BB )T, — 6 ¢ &)

by taking ¥ — Z with dg,p in terms of dgag and dCxp

» For dgag = 0 procedure known to reproduce €2 on [(4as)
(Ashtekar, Magnon 1982)
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Computation of Diff(5?) charges

» We seek symplectic product from covariant phase space:

(5,8 = /E 45, (5(v/88™)F TS, — (/BB )T, — 6 ¢ &)

by taking ¥ — Z with dg,p in terms of dgag and dCxp

» For 6gag = 0 procedure known to reproduce €2 on [(4as)
(Ashtekar, Magnon 1982)

» well defined ¥ — Z limit for defining equation of Qy:
§Qv = Q°V(8,6y) V8 € (4as) (%)

dv = (6vqag,dv Cag), 8vCag = 6\ Cag — uDADgD - V

> can solve (x) for Qv = Qv = Q"™ + QY™
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Diff(5?) Charges

>

Qi = 7 [ 8.c*®8lpCas
15

same expression as Virasoro QI (with Voav) v

>
1
QY™ = 5/ CFsaB
T

with ]
sag = DaDgD - V — ED(ADC6VQB)C + D(aVp)

» going to (z,Z) coords:

o7y — 33Vz, Szz =0 vz

= Q™ matches with with Virasoro Qf.;’ft i

this explains why naive replacement Q; — Qv worked
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Diff($%) Ward Identities

Follow same steps as Virasoro case:

1. Write quantum charges in terms of Fock operators
= - 1B,h
OE\}ardlp, h) 0 _’J?/, |5s h)

1 =
goffc i 2 3\/2 .
Pt = .-!-TfanE/d z[02VZa,(E,z) + 83V?a_(E, 2)]

2. Evaluate matrix element of [Qy, S] = 0:

(Brlz. . [[QFT Sl - Brbay = —{(Bihy,- .- |[@ 81| - Balin)

2 n
Ilm aEE] i 63 szn+1 == 33VZM;+1) = ZJ%,’”M;}

My = (Bihui...|S|. .., Bahn)

17/21
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Diff(S?) Ward Id < CS soft theorem

n

: d?z : i
Jim O E / T (BVIME, + VML) = |
=

» Take
V= (z—w)}(z-w)%s = Kw,w)
» On LHS use:
BKE, wy = 4163 (z — w)
» On RHS use:

J?&t,m = (q.p) ‘€L p"qp )"

q“ = (11 a(W, V-V))
» CS formula is recovered!

n
lim OgEMG =) (a-pi) el Pl apdf M,

i=1
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Space of vacua and symmetry breaking: Diff(5?)

Larger space of vacua: {(gag, Nap =0)} €T
one can show that under G:

(9aB; Nag = 0) = (qag, Nag = 0)

Each classical vacuum invariant under a Poincare C G
In quantum theory G broken down to Poincare:

G — BMS — Poincare

‘Subleading’ soft gravitons as Goldstone modes of
G — BMS (Diff(5%) — Conf(5?))

‘Leading’ soft gravitons as Goldstone modes
BMS — Poincare (ST—=T)
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Conclusions

» Group of asymptotic symmetries

accounts for

G = ST x Diff(52)

Mugs = (E-1S@ + SW) M,
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Conclusions

» Group of asymptotic symmetries

G = ST x Diff(52)

accounts for | M1 = (E;IS(O) + 5(1)) M, |+ O(Es)

» G spontaneously broken to Poincare: soft gravitons as
associated Goldstone modes

» Analysis can be extended to massive particles

» To do

» Symmetries in IR finite S-matrix [Kulish-Faddeev (1970),
Ashtekar (1981), Ware-Saotome-Akhoury (2013)]

» Better understanding of classical conservation law
[ST: “conservation of energy at every angle”" Strominger (2013)]

» Higher dimensions ?
[ST: Kapec, Lysov, Pasterski Strominger (2015)]
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