Title: AMATH 875/PHYS 786 - Fall 2015 - Lecture 1

Date: Sep 14, 2015 01:30 PM

URL: http://pirsa.org/15090002

Abstract: Course Description coming soon.

Pirsa: 15090002 Page 1/30

Pirsa: 15090002 Page 2/30

Pirsa: 15090002 Page 3/30

Pirsa: 15090002 Page 4/30

Pirsa: 15090002 Page 6/30

Pirsa: 15090002 Page 7/30

Pirsa: 15090002 Page 8/30

Strategy:	1) Start with a mere "set" of points (events), M
	Then add structure:
	1 Define open neighborhoods (i.e., a "topology" on M)
	1 Define "separability" of points (i.e. Hausdon condition)
	1 Define "continuity" (pre image of open sets is open)
	Define "differentiability" (via chart change diffabilité

01	Them add structure:
	B Define open neighborhoods (i.e., a "topology" on M)
	1 Define "separability" of points (i.e. Hausdonf condition)
	1 Define "continuity" (preimage of open sets is open)
	Define "differentiability" (via chart change diffability)
later:	O Define tangent & lensor spaces
	Curvature = nontriviality of porallel transport

File Edit Vie	Define "continuity" (preimage of open sets is open)
	Define "differentiability" (via chart change diffability)
	later: O Desine tangent & lensor spaces
	Cenvature = nontriviality of parallel transport
	(why consider others? May be useful
	Other descriptions of curvature? for quantum gravity b/c what's on private page is likely over idealized.
	1 Curvature = seum of angles in triangle # TT
	Convature = nontriviality of Pythagoros law

File Edit Vie	w Insert Actions Tools Help	
		(why consider others? May be useful "
	Other o	lescriptions of curvature? for quantum gravity b/c what's on privous page is likely over idealized.
	۵	Curature = seum of angles in triangle + TT
	۵	Curvature = nontriviality of Pythagoras law
	D	Curvature = tidal forces. Mathof it: Sectional aurestures
	۵	Curvature = nontrivial sound of object when vibrating
		This field is called Spectral Geometry.
		Interesting b/c connects mathematical languages
		of quantum theory (spectra etc) and general relativity. 4/16

Pirsa: 15090002 Page 13/30

for scalars, vectors, spinors and curvature	
1 Symmetries	
local and global conservation laws, if any!	
1 Tetrad formulation, 6R as a gange throny	
1) Singularities, and their unavoidability	

Pirsa: 15090002 Page 15/30

Pirsa: 15090002 Page 16/30

Pirsa: 15090002 Page 17/30

Pirsa: 15090002 Page 20/30

Pirsa: 15090002 Page 21/30

File Edit View Insert Actions Tools Help	h: U -> RM, UCM
	is called a chart of M.
	For any point q & U its image
	$h(q) \in IR^n$
	is a set of n numbers (x,,x,,,xn)
	called the coordinates of q.
	10 / 16 ~

Pirsa: 15090002 Page 28/30

Pirsa: 15090002 Page 30/30