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Entanglement entropy

Divide the system at a fixed time in two sub regions: 4, A

t

pa(t) =trzp(t)
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Entanglement entropy

Divide the system in two sub regions: 4, A

t

Sgg = tr palog py

It is in general very hard to compute.
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Holographic entanglement entropy

[Ryu-Takayanagi] proposed that if the spacetime is static the
entanglement entropy of A4 is given by:
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Holographic entanglement entropy

For the static case, [AL-Maldacena] used the Euclidean path
integral to get the RT formula.

This derivation can’t be directly applied to a time dependent
case because it assumes time reflection symmetry.

In general, one needs an in-in contour to compute p,(t) .
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Covariant entanglement entropy

Time dependent geometries, g,, is a non trivial function of time.

[Hubeny-Rangamani-Takayanagi]: EE is given by an extremal area

Aext

Y —
EE 4Gy

It
A

Time dependence is generic, can’t use LM.
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Motivations for proving HRT

* The construction of LM has allowed several generalizations: higher
derivatives [Dong,Camps], quantum corrections [Faulkner-AL-
Maldacena], ... Generalizations make sense, can we understand the
time dependent situation in a similar way?

* LM used Euclidean time, it makes a Lorentzian interpretation
complicated. Have a clearer picture.

* Understand directly the meaning of a Lorentzian computation of
entanglement entropy can help us understand better what one
means with subregion-subregion duality.
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FIELD THEORY
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Real time path integral

To describe p(t) = [P (t)){(t)] using a path integral, we need to
double the fields. It will be constructed with a Schwinger-Keldysh

contour. () (WY ()|

Normally we think about SK for correlators but it is actually also used to
compute effective actions in mixed states [Feynman-Vernon].
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Real time path integral

Path integral for S9 = ﬁ logtr ps()?,Sgg = St

In QFT's we think of W(t, ¢y ) as the path integral up to t, with
boundary conditions for the fields there.

"Glue” by summing over the boundary conditions

trp(t) = [ [DPF1W (L, )P (¢, ) (dg — B3)
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Reduced density matrix

We can compute p, by gluing in A and leaving the A=, A* regions untouched.
tr pd will be given by gluing the remaining ¢3: ¢~ = ;"
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Path integral for the Renyi entropy

The set up is clear, but the geometry is kind of messy: g patches of
coordinates t;, X;.

0A:t; = 0,x; = 0 is a codimension 2 fixed point of the Z; symmetry
that exchanges the replicas (cyclicity of the trace).

From an observer that only has access to D[A], the Z, symmetric fixed
point acts a source of local temperature: f§ = 2mq. Geometry only
smooth (locally flat) if g = 1.
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Path integral for the Renyi entropy

The set up is clear, but the

geometry is kind of messy: q patches of
coordinates ¢, x;.

dA:ty = 0, =0 s a co

dimension 2 fixed point of the Z,
that exchanges the replic

q Symmetry
as (cyclicity of the trace).
From an observer that only has
paint acts a source of local
smooth (locally flat) fg=1,

access to D[A], the Z

q Symmetric fixed
temperature: ff = 21

q. Geometry only
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Path integral for the Renyi entropy

Renyi’s: different state where the local Rindler temperature is 2mq.
Equivalently, a complicated replicated geometry.
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GRAVITATIONAL
CONSTRUCTION




Preliminaries

We want to compute tr pi. Roughly two steps:

* Compute p(t) in the bulk, dual of Schwinger-Keldish.
 tr(trzp)? in the bulk?

First step is well understood.
Second step is tricky. Use guidance from Euclidean case.

— Put the two ingredients together.
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Dual of Schwinger-Keldysh

[Skenderis-vanRees] discussed how one should think about the dual of
SK contours. They are basically what people call “time folds”, ie filling
in the SK contour in the bulk.

One evolves the bulk up to a Cauchy slice £, and then comes back.

The boundary conditions at X, are basically continuity of the fields
across it.
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Interlude: review of Euclidean case

In [AL,Maldacena], considered the case with Z, symmetry. In that case, we can go to
the Euclidean setup, where have to construct the geometry dual to a boundary with a
conical excess 2mq around 0A.

It is worth reviewing it because we will proceed in a similar way.
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Interlude: review of Euclidean case

T = T + 21w moves us from A in one replica to the next. A global 27
rotation is a symmetry, the Z, symmetry that exchanges replicas.

The boundary geometry has a Z, fixed point: dA.

Assumption: Z, symmetry extends to the bulk .

Fixed point in the bulk, &.
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Interlude: review of Euclidean case

Dual bulk geometry: smooth, no conical singularity.

Z 4 fixed point will be a special codimension two surface in the bulk.

The metric near € is completely determined by the symmetries:
2

-
ds? =dr? + ?drz + (yij + KJr9sint + Kjjricos t)dy;dy; + 0(r?9)

witht ~ 7 + 2ngq.

The explicit metric for arbitrary g will be complicated.
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Interlude: review of Euclidean case

Replica symmetry, same action in each replical, = q fq, T € (0,2m).

fq : original geometry in the presence of codimension 2 fixed point,

deficit angle %T.

Smooth parent space, but from this “orbifolded” point of view, it looks
singular. Analytic continuation to real q : simply changing the tension of
the “cosmic string”.

“Kinematics”, we haven't used that we are dealing with Einstein yet.
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Real time S4

Let’s pick a spacelike surface in the bulk £, where we do SvR.
Boundary conditions for fields close to dA: local temperature f = 2nq.
Global Z, symmetry, 0A is a fixed point with respect to this symmetry.

Consider € C X, the extension of the fixed point to the bulk.
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Real time S4

Extend 7 direction to the bulk, local temperature 2mq.

NT ~ T + 2mqi
N
b

b
A
L)
.,
b
.,
‘\
‘! ‘\
v , s DY J
W T N 2mge
L) .
3 .
A .
.
]
.
.

These geometries will be real.
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Real time S4

For the Renyis, Z, symmetry and smoothness constraints the metric
near £ :

2
r
ds? = dr? — ?drz + (yij + KJr9sinh 7 + K;r9cosh t)dy;dy; + 0(r9)

This is smooth because locally flat.

To compute the action, analytically continue in g by “orbifolding”: non-
smooth metric, local temperature 21/q .

“"Kinematics”: original SvR geometry with a codimension two defect
that changes the local temperature to 7”.
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Real time S4

Pick an action. For Einstein, the previous local analysis gives the
A

extremality condition and evaluating the entropy gives P
N

This gives HRT, € has to be in Z.

Not all £, are good: have to be able to accommodate a singularity.
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Comments

 “Dual” of tracing out in special Z's : those which contain the extremal surface.

Only in these surfaces one can divide £ = X, U Z; in a sensible way
No surprise, same thing happens in the eternal black hole.

Entanglement wedge is dual to tr pi,q ~ 1.

Pirsa: 15080079 Page 37/42




Comments

* “Dual” of tracing out in special Z's : those which contain the extremal surface.

Only in these surfaces one can divide £ = X, U Z; in a sensible way
No surprise, same thing happens in the eternal black hole.

Entanglement wedge is dual to tr pi,q ~ 1.

Pirsa: 15080079 Page 38/42




Conclusions

* In the Z, symmetric case one can go to Euclidean space and make

sense of the analytic continuation of the replicated geometry in the
bulk.

* Lorentzian case: real time path integrals set up the boundary
conditions of the problem in terms of changing the local
temperature. One can generalize the previous derivation to
dynamical situations.

* Intuitive picture of tracing out in the bulk.
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Open questions

* Can one derive (H)RT without wusing the replica trick?
It looks like there should be a way of proving it that just relies in
gauge invariance: under what conditions can one split
diffeomorphisms in a theory of gravity?

* This looks like “tracing out/cutting” in the bulk. Can one go the other

way, ie EPR —ER ? Under what conditions can one glue stuff in
gravity?
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