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Abstract: | describe a class of non-perturbative renormalization group (RG) transformations which, when applied to the (discrete time) Euclidean
path integrals of a quantum systems on the lattice, can give results consistent with conformal transformations of quantum field theories. In
particular, this class of transformation, which we call Tensor Network Renormalization (TNR), is shown to generate a scale-invariant RG flow for
guantum systems at a critica point. Applications of TNR towards study of quantum critical systems, and its relationship to the
multi-scal e-entanglement renormalization ansatz (MERA) for ground and thermal states of quantum systems, will be discussed.
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Tensor Network Renormalization, arXiv:1412.0732
Tensor Network Renormalization yields the MERA, arXiv:1502.05385
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Overview [

express many-body system AU“ — | —@)—j

as a tensor network: k|

Euclidean path integral of

partition function of 2D
1D quantum model

classical statistical model
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» tensors encode Boltzmann weights * row Of ten.so.rs en'codes .small
evolution in imaginary time
« contraction of tensor network equals

weighted sum over all microstates « contraction of tensor network equals

weighted sum over all trajectories
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0verV|eW local scale transformations on the lattice:

o ® o
S

scalar

i Practical goal: efficient and accurate contraction
i of a tensor network to a scalar

i.e, could represent an
expectation value in the

| quantum system (y|o|y)
' Conceptual goal: achieve a proper RG flow

\
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Overview: real-space RG
Basic idea of RG:

R Iterative RG
description in terms of |

. description in terms of a few |
transformations P !

Very many microscopic effective (low-energy, long
degrees of freedom > | distance) degrees of freedom

] ]
1 L]
1 1 ]
I / | I
\ ! A ’
. ’I e T I T S ,

each transformation removes
short-range (high energy)
degrees of freedom

~

initial description

o coarser description

:
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£

——0—0—90—¢

Pirsa: 15080065 Page 5/80



Overview: real-space RG

Early real-space RG: Kadanoff's “spin blocking” (1966)

lattice of classical spins
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initial description: H(T,J)
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Overview: real-space RG

Early real-space RG: Kadanoff's “spin blocking” (1966)

lattice of classical spins coarser lattice
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initial description: H(T,]) renormalized parameters: H(T',]")

-

=
&=
=

PN

= | =) =) | 4mmh fed | | gy

T —————

N4
/I\\

-

r

:

| (e = |

33

e b e e e

-

i
)

ind adndhs
=
=
| Dias @ia e
=
el k) b

P,

S
=
=
=

---successful only for certain systems
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Overview: real-space RG

L.P. Kadanoff (1966): “Spin blocking”

spiritual Key change: a more general prescription
successor for deciding which degrees of freedom
can safely be removed at each RG step

Levin, Nave (2006) : “Tensor renormalization group (LN-TRG)”

4

truncated

}1

N e
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Overview: real-space RG

L.P. Kadanoff (1966): “Spin blocking”

spiritual Key change: a more general prescription
successor for deciding which degrees of freedom
can safely be removed at each RG step

Levin, Nave (2006) : “Tensor renormalization group (LN-TRG)”

+ many improvements and generalizations:

"

Xie, Jiang, Weng, Xiang (2008): “Second Renormalization Group (SRG)

n

Gu, Levin, Wen (2008): “Tensor Entanglement Renormalization Group (TERG)

"

Gu, Wen (2009): “Tensor Entanglement Filtering Renormalization(TEFR)

Xie, Chen, Qin, Zhu, Yang, Xiang (2012): “Higher Order Tensor Renormalization
Group (HOTRG)”
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Overview

still contains

Flaw with previous tensor RG methods (such as LN-TRG): microscopic

/ baggage
5 original \i RG step coarser i RG step f coarser \i RG step
i MICrOSCOPIC |  w—mp effective | effective | =3

description | description | description !
S NGl j/— T =
1 some short-ranged 1 w

correlation propagated

some short-ranged
correlation removed

Flaw: each RG step removes some (but not all) of the short-
ranged degrees freedom

Consequences:

« Computational breakdown near (or at) a critical point x

« Effective theory still contains unwanted microscopic detail; one )(
does not recover proper structure of RG fixed points
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Overview
New approach: “Tensor Network Renormalization (TNR)” arXiv:1412.0732

A way of implementing real-space RG that addresses all short-ranged
degrees of freedom at each RG step

original | RGstep | coarser | pGstep | coarser | RG step

microscopic —» | effective —_ i effective —
i description

ol
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short-ranged || short-ranged Il short-ranged
correlation removed correlation removed correlation removed

Advantages:

+ Proper RG flow is achieved, TNR reproduces the correct structure
of RG fixed points (including critical fixed points)

+ Prevents harmful accumulation of short-ranged detail, allowing for a
computationally sustainable RG flow

exponential cost scaling nstant cost
(previous tensor RG) > (new approach, TNR)
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0verVIeW local scale transformations on the lattice:

RG flow in the
space of tensors: A(O) — A(l) - A(Z) — e — A(S) — eee

—

o

scalar

i.e. could represent an
expectation value in the
quantum system (y|o|y)

i Practical goal: efficient and accurate contraction
i of a tensor network to a scalar

' Conceptual goal: achieve a proper RG flow

\
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Overview

Local scale transformation can be applied inhomogeneously
to do interesting things...

Euclidean path integral Multi-scale entanglement
(1D quantum system, PBC) renormalization ansatz (MERA)
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Local scale transformations on the lattice with TNR
(G. E., D. Gaiotto, R. Myers, G. Vidal, in prep. )

punctured plane to it 'Xff -> S ]‘F _______ 1

cylinder

plane with two
punctures into
pair of pants

n - sheeted
Riemann surface
to cylinder

0 € [0,n2m)

Pirsa: 15080065 Page 14/80



Overview: Tensor Networks R0

dimension

|

/
Let Aa’jkl be a four index tensor with i,j,k,l € {1,2,3, ,{;}

i.e. such that the tensoris a X x X x X x X array of numbers

Diagrammatic notation: Contraction of two tensors:
' AT T
Aijkl — | —A—j ZAinIAnmoj «—> | —A—A—n
k | J kl |o
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Overview: Tensor Networks

bond
dimension

/

J

Let Aa’jkl be a four index tensor with i,j,k,l € {1,2,3, ,{;}

i.e. such that the tensoris a X x X x X x X array of numbers

Diagrammatic notation:
'|

Aijil — 1 —@& — j
g |

Contraction of two tensors:

Square lattice network (PBC):

Ai}'kIAmnojAkpqerstp

ijkimn...

N
—tTr(@ A)ZZ

x=1

;’I Im
]

ZAinIAnmoj «— | —(A—A)—n

J il lo

i m

[v j (vn [ K
I[;A I~ A A »

k ’o ’ Contracts to a
r P S scalar:
A0 @—@;

q

__)Z
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Partition functions as Tensor Networks

Square lattice of Ising spins:

1 0i 1 0j Oy \on € {+1, -1}

|

*7?!””76&0”“ :““"f’r""' Encode the Boltzmann weights of a

1 01 YKk 0y 1 0o plaquette of spins in a four-index tensor
e X

7:zo'q : O-]- : a!f : 6]} :o'l : o‘] l ]
g g ot A N/
T T e T B

B i 1 N
Hamiltonian functional for where:
Ising ferromagnet: A . e(Uin+0jUk+0k01+010i)/T

H({o}) = - ) o
(i,))
Partition function:

7 = Z e—H({a)/T
)
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Partition functions as Tensor Networks

Square lattice of Ising spins:

S \ /
bt N N\
S

A - \ / \ / \ / Z
Haad it AN N
T /\/\
Hamiltonian functional for where: / \

Ising ferromagnet: Aijkl _ e(a,aj-i-ajakﬂrkag-f-aza,')/T

H({o}) = - ) o

(i,J)

— _ «— Partition function given by
Partition function: N contraction of tensor network

7 = Z e—H{o)/T = tTr( ® A)

x=1
{c}
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Path Integrals as Tensor Networks

Nearest neighbour Hamiltonian for a 1D quantum system.

H=Zh(r.r'+l}= y h[r.f‘*‘—llé-\.—_"?rf'.."—?-l;v
e a—
I

reven r odd

= ”:'\':-n + Hodd

We want to express e P¥ as a tensor network:

-GH
recall: [Yes)(¥es| = l'm[ |

s
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Path Integrals as Tensor Networks

Nearest neighbour Hamiltonian for a 1D quantum system:

H:Zh(r,r+1) = Z h(r,r+1) + z h(r,r +1)

I even r odd

= Heven T Hoda

We want to express e PH as a tensor network:
—_ 13 -FH
recall: |YasHPgs| = lim [e # ]
f—o0
Expand in small time steps:

e—ﬁH —_ e—'rHe—THe—rHe—‘rH

Suzuki-Trotter expansion:

e_TH —_ e—THevene—THodd + O(TZ)
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Path Integrals as Tensor Networks

Separate Hamiltonian into even and odd terms:

H = Z h(r,r+1) + Z h(r,r +1) = Heyen + Hodd

I even 1 odd

Expand path integral in small discrete time steps:

e—BH — e—rHe—~THe—~THe—TH

e_TH —_ e—THevene—THodd _|._ O(TZ)

Exponentiate even and odd separately :

r=20 1 3 4 5 6 7 8 9 10

| | | | [ | | | |
—THeyen { —'rh e 'rh [e—‘rh] e—rh] | e—‘th te
| | |

| | |
e “THoda {[:j —Th [e—‘rh] [e—‘rh ‘ e—‘th e—rh
| | | | | |

Q

—-TH

Page 21/80



Path Integrals as Tensor Networks

“e-ml’ l‘e—ml] te—rnj ‘e-mj Le—ml] ‘ e—m.
E (] (e) [e™] [e] (e []
|

A 4
Ailﬂ;,[f’_BH] Caad e_m] e_rh] ‘e_m] te_rh] i = [Yas){Was|
E te—rh] [e—rh] {e—rh] ‘ e—rh] | e—'ch] []
[e—rh] | e—rh’ e~ Th te—rh] ‘ e te—rh]

v —th —th —th -th —th
E ‘Ie |’ ‘le I’ |e |] [Ie |] [Ie |] Q
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Overview

encode many-body systems as a tensor network:

partition function of 2D Euclidean path integral of
classical statistical model 1D quantum model

A S o ¢ o o
—¢—o o9 o9

i

 tensors encode Boltzmann weights * row of tensors encodes small
evolution in imaginary time

>
L 2
9—0—0—0—

Euclidean time
[ Q‘-
.“4
9—0—§

space

space space

« contraction of tensor network equals

weighted sum over all microstates * contraction of tensor network

equals weighted sum over all
trajectories
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Local Approximations:

Rule: any local replacement\
want to replace a local subnetwork of tensors is potentially valid...
(e.g. a 2 x 2 block) with something else...
F r
\_IA_
> 35 (
1
...S0 long as the difference
is small:
o = |[F—=F|

Replacement error:
5% = ||F = F||? = ||F|I? —tTr(F @ F1) —tTr(F @ FT) + ||F|?

-

L N
-0 (1D

)

1

Y
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Tensor Renormalization Group (LN-TRG)

e , Levin, Nave (2006)
Tensor renormalization group (LN-TRG) is a method for

coarse-graining tensor networks based upon blocking and
truncation steps
Example of blocking + truncation: 2D classical Ising (critical temp)

take a (4 x 4) block of tensors from the partition function

contract to a single tensor; each (16-dim) index describes the
state of four classical spins

can the block tensor be truncated?

—o—o | x =16

——@ ‘
blocking singular value
O— 0 —> decomposition /
—_—
—0—@
X = 256
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Tensor Renormalization Group (LN-TRG)

o , Levin, Nave (2006)
Tensor renormalization group (LN-TRG) is a method for

coarse-graining tensor networks based upon blocking and
truncation steps

Example of blocking + truncation: 2D classical Ising (critical temp)

take a (4 x 4) block of tensors from the partition function

contract to a single tensor; each (16-dim) index describes the
state of four classical spins

can the block tensor be truncated?

10°
v AN
S 55
2o
¥ = 256 107"° \
10° 10" 10°
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Tensor Renormalization Group (LN-TRG)

discard singular values
smaller than desired
truncation error §

truncated

SvD
——

/

. X< x?
Tensor Renormalization Group (LN-TRG) works through
alternating truncated SVD and contraction steps:

xy dim

. b b

truncated
—R—FF—8—0— s5\p
—_—
——0—9F—9—
initial network coarser network
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Tensor Renormalization Group (LN-TRG)

discard singular values truncated
smaller than desired SVD
truncation error § p——

equivalent approach:
implement truncation through
projector of the form Wiw for

isometric W projector P acts as a

(approximate) resolution
of the identity

i.e. choose isometry W
to minimise truncation
error §

>
1]
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Tensor Renormalization Group (LN-TRG)
Levin, Nave (2006)

4 “;Ar

‘é é é é* in_sert n | lk“ \

9o @—prﬂors_ BN ;’ ' u

90909 i ™
WK \

e v
LY
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Tensor Renormalization Group (LN-TRG)

RG flow in the
space of tensors: A(O) - A(l) - A(z) — e = A(S) — e

———> RG flow at criticality (2D Ising) with TRG ——

100
s=10 s=
~ ...
%} 1\
- 10
< \ \
lSVD S .2 , %,

c 10 5? -
3 |
o 1073 Q'
4 %
w |

104 *_- % :

109 10" 10210° 10" 10210° 10" 10210° 10! 102

Bond dimension X required
for truncation error < 10-3: ~10 — ~20 —— ~40 —— >100

Spectra become increasingly flat with each RG step! x
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Tensor Renormalization Group (LN-TRG)
Levin, Nave (2006)

A0)

Is LN-TRG a good RG transformation for critical systems?

need to grow bond dimension ¥ with each RG step
does not converge to scale-invariant fixed point

Can be understood logarithmic scaling of .
entanglement entropy in 1D quantum systems: SL _ 3 log(L) +k
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Tensor Renormalization Group (LN-TRG)
Levin, Nave (2006)

basic step of LN-TRG
(projective truncation):

8 =

isometries remove some (but

not all!) Shor‘t-r‘anged correlated | coarse-grained
degrees of freedom | tensor
LN-TRG fails to remove some

short-ranged correlations, which | —
propagate to next length scale !

Example: corner-double line
(CDL) tensors
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Tensor Renormalization Group (LN-TRG)
Levin, Nave (2006)

basic step of LN-TRG
(projective truncation):

8 =

isometries remove some (but

not a“l) Shor‘t-r‘anged correlated | coarse-grained
degrees of freedom | tensor
LN-TRG fails to remove some |

short-ranged correlations, which | —
propagate to next length scale ;

Example: corner-double line
(CDL) tensors

Pirsa: 15080065 Page 33/80



Pirsa: 15080065

Fixed points of LN-TRG

JiJ2

Imagine “A” is a special tensor such that each
index can be decomposed as a product of
smaller indices,

“1{}?\‘1 = ‘-{(1113 Y T2 X kka )(hiy)

such that certain pairs of indices are perfectly
correlated:

“:[(Jli: )(_J'l_f: )(.‘?\1;\: )(111:) = (‘)1’1‘;’1 ()_J':A': C)A1[1 (>[:J:

These are called corner double line (CDL)
tensors. CDL tensors are fixed points of TRG.
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Fixed points of LN-TRG

JiJ2

Imagine “A” is a special tensor such that each
index can be decomposed as a product of
smaller indices,

AUH = “1(1113 )(J1J2 )kik2 )(hia)
such that certain pairs of indices are perfectly
correlated:

= Ofl.fl O.’:"f: 01"1"1 (5[

'401":)(.’1.’:)(*'\'1’*: )(hi1y) 23

These are called corner double line (CDL)
tensors. CDL tensors are fixed points of TRG.

Partition function built from CDL
tensors represents a state with
short-ranged correlations
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Fixed points of LN-TRG

single iteration of LN-TRG:

new CDL
tensor

CDL tensor

Some short-ranged always
correlations remain under LN-TRG!
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Fixed points of LN-TRG

short-range correlated short-range correlated

TRG removes some short ranged correlations, but...
others are artificially promoted to the next length scale

Accumulation of short-ranged details causes computational
breakdown when near (or at) criticality

Is there some way to ‘fix’ tensor renormalization such that all
short-ranged correlations are addressed?
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Outline: Tensor Network Renormalization

The set-up: Representation of partition functions and path integrals
as tensor networks

Previous approaches: Levin and Nave's Tensor Renormalization
Group (LN-TRG), conceptual and computation problems.

New approach: Tensor network renormalization (TNR): proper
removal of all short-ranged degrees of freedom via disentanglers

Benchmark results

Extensions
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Tensor Network Renormalization  arxiv:1412.0732

previous RG schemes for tensor
networks based upon blocking:

i.e. isometries responsible for
combining and truncating indices

but blocking alone fails to remove short-ranged degrees of freedom...

]

|

...can one incorporate some form of unitary disentanagling into a
tensor RG scheme?
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Tensor Network Renormalization  arxiv:1412.0732

previous RG schemes for tensor
networks based upon blocking:

—_—
i.e. isometries responsible for ﬂ:
combining and truncating indices

but blocking alone fails to remove short-ranged degrees of freedom... ‘

...can one incorporate some form of unitary disentangling into a
tensor RG scheme? ‘

Pirsa: 15080065 Page 40/80



Tensor Network Renormalization  arXivi1412.0732

- N e d
previous RG schemes for tensor [ | \I A )
networks based upon blocking: _— i

l ’ _—+ | ‘I
i.e. isometries responsible for ——— o S
[ s @

combining and truncating indices

but blocking alone fails to remove short-rangad deg

_..can one incorporate some form of
tensor RG scheme?

Multi-scale entanc
a

Tree tensor network (TTN) Y
renormalization ansat
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Tensor Network Renormalization  arxiv:1412.0732

previous RG schemes for tensor
networks based upon blocking:
é

i.e. isometries responsible for
combining and truncating indices

but blocking alone fails to remove short-ranged degrees of freedom...

...can one incorporate some form of unitary disentanagling into a

tensor RG scheme?

Multi-scale entanglement

Tree tensor network (TTN) Aninis
renormalization ansatz (MERA)

TR .

?wntan(}m
. [ ﬁl —
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Tensor Network Renormalization

previous approach

basic step of LN-TRG 5 _
(projective truncation):

basic step of Tensor
Network Renormalization
(projective truncation):

wwt=1 vut=192 | § =
|

=1 5-/|
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Tensor Network Renormalization

basic step of Tensor
Network Renormalization 5 —
(projective truncation):

use iterative methods for
optimizing isometry W
and disentangler U
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Tensor Network Renormalization

previous approach

basic step of LN-TRG 5 _
(projective truncation):

basic step of Tensor
Network Renormalization
(projective truncation):

wwt=1 vut=192 | § =
|

=1 5-/|
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Corner double line tensors revisited

Isometries only example: corner double
(LN-TRG) line (CDL) tensors

new CDL

CDL tensor tensor

Isometries and
disentanglers (TNR)
yin —> { )
0

O uncorrelated

CDL tensor ” (product)

tensor
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Corner double line tensors revisited

short-range correlated short-range correlated

previous

network of tensor RG

CDL tensors

N
TNR
\trivial (product) state
TNR coarse-grains a short-range SOON SN
correlated network into a trivial | f,’ l\ )
(product) network as desired!
Does TNR work for critical £ PN
systems? (with correlations { Voo )
at all length scales) Cuy :
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Tensor Network Renormalization

key coarse-graining step of TNR:

Simplification: disentangling is
expensive... are all disentanglers
necessary? No!

Can still address all short-range
degrees of freedom...
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TNR iteration
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TNR iteration
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TNR iteration




TNR iteration

g % % % (b)
Tensor network renormalization (TNR):
Local scaling transformation designed
to address all short-ranged degrees
of freedom at each step
does it work???
(e) % d)

pad % NS @ o N
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Sustainable RG flow

RG flow in the
space of tensors: A - A(l) - A@ 5.5 A(S) — e

Does TRG give a sustainable RG flow? Old approach (LN-TRG)

———> RG flow at criticality ——> V°' ch (TNR

100
L(a) s=10 s=1

10°" ‘\x‘ 5*%g%b ;1§“ggb
) % Y

102

Spectrum of A ()

4 - >
10-3 Y *
¥ 3
104 : L %
10% 10" 10210% 101 102 10°

LN-TRG: Spectra become increasingly flat with each RG step! x

Spectra unchanged over many RG steps J
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Benchmark results, 2o ciassical 1sing at criticality

Truncation Error, €

Free energy error, §f

x=24 2 P 1074 A -
0 X TNR X TNR
(o Q 5f a
2 o Y X Y~
X = (3 \
M A 3~ — — % - ! o]
B pr » =M M- WM * Q
‘ ©
=12 al \(
3| foe ae o ﬂ—iu 1078 3 6f0C€—(bX)
107~ p¢ 7 k\tJ
y =16 b
% 3 e M M N M K \
X x
o X= 24 0-10 F \
U - K K- M K K- \¢
o \
1T e — ‘ P :
2 4 6 8 10 20 40 60 80
RG step, s Bond Dimension, Y
Old approach truncation error grows free energy converges
(LN-TRG): with RG step (fixed X) polynomially in X

Ne

truncation error
remains constant

free energy converges
exponentially in ¥




TNR iteration

4| B:aB=a




Overview

RG flow in the
space of tensors: A(O) — A(l) - A(Z) — 00 = A(S) — eee

*—¢

*—o partition
function

o o |

| contraction

® T > Z

\

*—@

free energy f= —kTlog(Z)
(per site) N

i Practical goal: efficient and accurate contraction \//
i of a tensor network to a scalar !

i Conceptual goal: achieve a proper RG flow

\
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TNR: proper RG flow /

1 Phase B
— stable
— & fixe

2D classical Ising, ¥ = 6 TNR —_— =— bl
K — R point B
RG flow in the s ; s f - ?K
space of tensors: A(® - A 5 4@) 5 ... 5 AP i
|4 4% 4% |4 :

below critical ordered (72)

T =09T, fixed point

il critical

T=T, fixed point

above critical

T=11T,

disordered

(trivial)

fixed point
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TNR: proper RG flow /

1 Phase B

2D classical Ising

RG flow in the s . f
space of tensors: A(® = A 5 A(2) 5 ... 5 4P - ks

|A(1)| |A(2)| |A(3)| |A(4)|

critical

T =T,

critical
fixed point

Previous approach (LN-TRG): RG flow does not converge at criticality

New ap ich (TNR): RG flow converges at criticality (to arbitrarily
high precision)

Is the critical fixed point RG map
given by TNR a good approximation
to the Ising CFT???

...it should be if the truncation error has
been kept small, but let’s check anyway
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Local operator

how does a local operator (inserted
as in impurity) transform under the
fixed point RG map?
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Local operator
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Local operator

local operators coarse-
grain to local operators!

Pirsa: 15080065 Page 61/80



Local impurity

diagonalize transfer operator
to find scaling operators
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Local impurity

diagonalize transfer operator — 2-Aq m
to find scaling operators

2D classical Ising at criticality, y = 6 TNR

p =1, local p = -1, local p = 1, non-local p = -1, non-local
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| 4412 [ s MAHHIERN b M

4 N 4+ 1 /8 ..uA“,.,an*xx.x.xxnw,.w 4+ 1 /8 t...........g.,c”*xxxxxw.......
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3 e 3+ 1 1’8 snsssnsnssssid BT R ssssssssssnnss 3+ 1 /8 I},‘.x,‘nx.x,.

? 2+1/2 ITTTPIRITIIE. A % 1 TR
2 I 2+ 1 »”8 ................... VI . TR 2+ 1 /8 b”“.x.
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1/2 @ ..................
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Fusion of operators

expand fused operator in
basis of scaling operators:

operator product
expansion (OPE)
coefficients

exact X =6 TNR
Ceoo 1/2 0.50105
Ceuu —-1/2 —0.49941
Cppuo | (1—1)/2 0.49957 — 0.49957i
Coue | A+10)/2 | 0.49957 + 0.49957i
Cepp i 1.00009i
Cepp —i —1.00009i
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TNR: proper RG flow /

2D classical Ising

\( Phase B
— stable
— - 1o

RG flow in the X > f
space of tensors: A® 5 A1) 5 4@2) ... 5 AP kg

|A(1)| |A(2)| 3)| 4)|

critical critical
— fixed point
T=T, |

Previous approach (LN-TRG): RG flow does not converge at criticality

lew a -. : RG flow converges at criticality (to arbitrarily
high precision)

Is the critical fixed point RG map
given by TNR a good approximation
to the Ising CFT???
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Over\”ew local scale transformations on the lattice:

RG flow in the
space of tensors: A(O) - A(l) - A(Z) — 00 = A(S) — eee

o

i Practical goal: efficient and accurate contraction J
i of a tensor network to a scalar

' Conceptual goal: achieve a proper RG flow V/

\
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open boundary

Apply TNR to the
half plane???

—[as)

Euclidean path
integral for 1D
quantum system
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open boundary
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open boundary

LR SR S R R |
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TNR ylelds the MERA (Evenbly, vidal, arxiv:1502.05385)

open boundary

TNR generates a MERA! ﬁ
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TNR ylelds the MERA (Evenbly, Vidal, arxiv:1502.05385)

exact representation of ground Approximate representation
state as a path integral of ground state (MERA)

[YGs) -

open boundary
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TNR y|e|ds the MERA (Evenbly, Vidal, arxiv:1502.05385)

exact representation of ground Approximate representation
state as a path integral of ground state (MERA)

[YGs) -

open boundary

scale-invariant scale-invariant
fixed point of TNR => MERA
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MERA for a thermal state (or black hole in holography)

open boundary
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Local scale transformations on the lattice with TNR
(G. E., D. Gaiotto, R. Myers, G. Vidal, in prep. )

plane with two A Bl

punctures into (e el
. ~

pair of pants Bl

plane with semi- foem=nd S
infinite defect line < /Jl‘;’a -> [ N e

to cylinder

n - sheeted
Riemann surface
to cylinder

0 € [0,n2m)
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Summary

Introduced " proper’ way to do local
scale transformations for lattice systems

- partition functions of classical
systems on the lattice

- (discrete time) Euclidean path
integrals of quantum systems on the
lattice
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Summary

Introduced " proper’ way to do local
| scale transformations for lattice systems

- partition functions of classical

—0—0—0—9¢ systems on the lattice
> (discrete time) Euclidean
- path
*—o o9 & integrals of quantum systems on the
lattice
—0—0—0—9 f
removal of short-
ranged entanglement
\l l/
=) =
Z N
I |
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Summary

Introduced " proper’ way to do local
scale transformations for lattice systems

——0—0—9
- partition functions of classical
— @& o © O ﬂ systems on the lattice
> (diccrata time) Euclidean path

—9—0—0—9 Tha n kS' quantum systems on the

——0—0—9

\ |

removal of short-

ranged entanglement « Base for powerful numeric
| 1 algorithms
- s
N /1 . .
= B « Nice conceptual connections

Future: higher dimensions, other
applications, blah blah blah...

Q
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TNR y|e|ds the MERA (Evenbly, Vidal, arxiv:1502.05385)

exact representation of ground Approximate representation
state as a path integral of ground state (MERA)

[YGs) -

open boundary

scale-invariant scale-invariant
fixed point of TNR => MERA
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