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Abstract: We study a quantum information metric (or fidelity susceptibility) in conformal field theories with respect to a small perturbation by a
primary operator. We argue that its gravity dual is approximately given by a volume of maximal time dlice in an AdS spacetime when the
perturbation is exactly marginal. We confirm our claim in several examples.
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(1) Introduction

Holographic Principle (or AdS/CFT)
= Geometrization’” of Quantum States in QFTs

algebraically very complicated

In other words, holography provides
a geometry of quantum information.

Emergent spacetime =AdS etc.

(D)) = Zc{ik}(r) ,) ® iy )...®]iy) “

[MERA: Vidal 2005, Swingle 2009]
[Raamsdonk 20069, ....]

Pirsa: 15080059 Page 4/37



Entanglement Entropy (EE)

The most well-studied quantity for this purpose is the
entanglement entropy, defined as follows:

Divide a quantum system into two subsystems A and B.

H,,=H,®H,

rot

Define the reduced density matrix /OA by O, = Tl‘BllP><\P‘ .

The entanglement entropy § | is now defined by

SA —_— _TrA pA 1Og,OA . (von-Neumann entropy)
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Holographic Entanglement Entropy (HEE)

[Ryu-TT 2006, Hubeny-Rangamani-TT 2007;
Derivations: Casini-Huerta-Myers 2011, Lewkowycz-Maldacena 2013]

S, — Min Area(y, ) Y A
COy.4=0A 4G
yaxA N

Y A is the minimal area surface
(codim.=2) such that

OA=0y, and A~ y,

homologous

Entropy=Area = A spacetime in gravity
= Collections of quantum entanglement ?

Pirsa: 15080059 Page 6/37



However, studies of EE (two body entanglement) are not
the all story of quantum information (Ql) aspects of gravity.

= Explore other Ql measures related to gravity !

On the other hand, the area (codim.=2) is not the only
geometrical quantity. How about the volume ? [susskind 14]

= It is very interesting to explore a quantum information
theoretic quantity dual to a (codim.=1) volume.

We argue that information metric is such an example.

(or fidelity susceptibility)
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@ Quantum Information Metric in CFTs

(2-1) Definition
Consider two different pure states |'V,)and |'V,). We define
the distance (called Bures distance) between them as

l)(‘ \P1>’ ‘P2>)=1—‘<‘P1 |\P2>
For mixed states we can generalize this to

D(pl,pz)=1—Tl{\/» plpz-\ﬁ]

S/

~—
Fidelity

~How much is it difficult
to distinguish two states
by POVM measurement.
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Consider pure states with parameters |W(A.A4,. ).
We define the information metric G as follows

D((P D)W +dA)))=1-[(F(D P +d))
=G, (D )(dA)+(dA))

Motivation of information metric = Quantum Estimation Theory

A quantum version of Cramer-Rao bound argues

<(§i )2 > _ 1 [Helstrom 76]
a G/l/l

Mean square error
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1 [Helstrom 76]
OA ) ) =
((B2)? ) = G

Mean square error

Pirsa: 15080059 Page 12/37



Note: Two definitions of Information Metric

Bures : G3da = B[p(/l +dA), p(A)]
Relative Entropy : G..)dA° =

where B[p,a]—l—Tr[\/fJf]
vl=1-]
Slpllo]l=Tr[pdog p —logo)].

Note: G(B) and G(F) are equivalent only classically.

in particular, []

We will employ the Bures metric G(F) below.
For the Fisher metric G(F), please refer to Nima’s talk.

[Lashkari-Raamsdonk 2015]
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Examples : Free boson (-) and fermion (+)

W (A= JIF | A e 22 ]0),
| > =~/ Pee M ]0)

JAF [ A'PHF |2 P)
1 — A'* A '

(W (A |W¥ (1)) =

dAdA*

= ds? = — .
(AF [ A [*)°

Free Boson: 2d hyperbolic space H2
Free Fermion: 2d sphere S?

irsa: 15080059 Page 14/37



In this talk, we consider a (d+1) dim. CFT and perform
one parameter deformation:

S(A) = Scpr + A| didx? O(x. 1),
We choose |'W(A)) as the ground state of the deformed

QFT defined by S(A1).

We are interested in the corresponding information
metric G;_/‘. . [or called fidelity susceptibility Shi-Jian Gu 2010]
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(2-2) Information Metric in CFT

In the path-integral formalism (t=Euclidean time),
T
(W(A+dD|P())

1

_ NraA j Do ex;{— j " ( j_of dr L(A) + j’o “dr L(A+ d/l))]. 0

Since we encounter UV divergences at t=0, we regulate
by a point splitting or equally by replacing |Wi+dA))with

Bty = e P WA +dA)) |
© (A |e TP (A +dA))
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Finally we obtain the following expression:

= % [ [ax [ ar[ " dar{OG. DO . o).

Comments: (1) It only involves a two point function.
Thus it is universal for CFTs at A=0 when space is R4,
(7,, is an universal information theoretic quantity to
characterize CFT ground states.

(2) For an exactly marginal deformation,
(&, , does not depend on A. (> Gravity dual).

(3) For non-marginal deformation, G, does
depend on A. In this case we focus on A=0.
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G, .at A=0 (CFT point)

O(x,t) is a primary with conformal dim. A

1

- <O(x’ DeE )> ) ((Z'— ')’ +(x—x')2)A .

After integration, we find the simple scaling (UV div.):

G,,=N,-V,-g7*?* (whend+2—-2A<O0).

2922 4P T(A—=d /2 -1)
(2A —d — DI (A) '
Ford +2-2A >0, G,, «V,-L*72* (IR div.)

N, =
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@ A Gravity Dual Proposal of Information Metric

We focus on an exactly marginal perturbation i.e. A=d+1.

(3-1) Exact Gravity Dual via Janus Solutions .

A gravity dual of the CFT with the interface g

is known as a Janus solution.[Bak-Gutperle-Hirano 03]

AdS3 Janus model [Bak-Gutperle-Hirano 03] . T
1 2 A
S, =— dx*\Jeg|R— g0 20, A+ 2R} x
Janus 167?G\ I g[ 54 a b .-id.S'] y
5 > > 3 Al d1‘
ds” = R.]ds(d}"— +f()")d5:1d5:)= A(y) = ,VJ._I m +A ., >Z

SO = %(1 ++1-22° cosh(Zy)) A=A, =y+O0(7). 2

Pirsa: 15080059 Page 22/37



In this model, we can evaluate the classical on-shell action:

-V 1
— 'IdS 1 10 > O,
Jmms(}/) mms(}/) 1672'G g1—2)/2 -

where £ is the UV cut off in the AdS2.

Thus we can estimate the information metric as

' YY)+ S R,V
\IJ le O —— e_'s—"m'm—‘(4")_'-‘5_.":2??21:(0) ~ 1 AdS 2 )
(FOH|¥ () Rl >
V.
= G, = “ . (¢ = central charge).
o 127ze

By noting the normalization A__, o« \/E/’L_MS , we can confirm that
this holographic result agrees with our previous CFT result.
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(3-2) Gravity Dual Proposal for General Backgrounds

For generic setups (e.g. AdS BHs) with less symmetries, the
construction of Janus solutions is difficult.

= Instead, we would like to propose a covariant formula

which computes the information metric: . __»X
Vol ) A AdS bdy
O max
G’q-/l - nd ) Rd+l .
AdS
> :The bulk time slice with maximal volume z

max

n, :a certain O(1)coefficient

Note: This formula is based on a hard-wall approximation.
Similar to AdS/BCFT [TT 2011].
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An explanation

Since we are interested in an infinitesimal exactly marginal
deformation of a CFT, we can model the Janus interface

as a probe defect brane with an infinitesimally small tension T:

.d+1
Sjmms -~ Sgra\'r'zy + TJ‘ 2V gdl .

The Einstein equation tells us
(0A)°

Tzsnd-—RdH ,

as we can confirm in Janus solutions explcitly.
The standard probe approximation leads to the formula:

VOI(Zmax )
’ Rd4-1

AdS

G,, =n,
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Example 1 : Poincare AdSd+2

Example 2 : Global AdSd+2

. ,  dz® +dx, dx"
ds” =

AdS

G L J-f dz n, Vv,
= = :

de?

1/ &
G;.;. = n, Vd Io

d
r“dr

- § ’A + I

Example 3 : AdSd+2 Schwarzschild BH

—

-8

G, =n,V,

' — / — \d+1
R

-

p N dx,dx;, J
Z2(1—(z/z,)*Y) o
b
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@ Dynamics of Information Metric and AdS BHs

In order to test our holographic information metric,
we turn to a time-dependent example.

=> Consider thermofield doubled (TFD) CFTs “I’}?D
under time evolutions. We assume 2d CFTs.

TFD = a pure state description of thermal state.
|\PTFD> = Z(/B)_l . Zé’_ﬁE” & i?>‘4|n>B

— P4 = TrB I] lIJTFD ><TTFD |] - Z(/B)_l ) Z e_ﬁE” | ’?>_4 <}7 |‘_1 = Prthermal -

. - _ _ Ji(H  +Hpg)t —i(H 4+H g)t
Time evolution : p, ., (f)=¢e "+ 77 -|‘I’TFD><‘PTFD|-6 i
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We consider another TFD state I‘If},‘?—z)) based on the CFT
with an infinitesimal exactly marginal perturbation.

— Compute the information metric for this deformation.

In the Euclidean path-integral description, we have

/ W ()
p —ﬁ—r
4 (Wi, ()| Wi, (1))

~ Wi, (1,)

CFT,
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Thus we can calculate the information metric:

1 ﬁ—té——g £+rE—£
G, (1) = Ej‘dxlj- dx, IE drlj‘“ dr,{O(x,.t)O(x,.7,)).
4

+lg+é& ”“"Z"**IE‘{'&‘

<O(x1971)0(x3,1'3 )> = (”/ﬁ)ﬁ

—.
.o« t(x, —Xx, . s a(rt, — 7,
(snlh‘ (X, ')+51n“ (7 ')]

Vo4 Va4

Note: We assume the space direction is non-compact.

= Our result is universal for any 2d CFTs.
We focus on A=2 (exactly marginal).

Eventually, weget G . (7,.)= 4k + 2772V‘ 7, -cot s 2 :
- 8e 3 U [ A
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Real time behavior

By setting 7 = —i7,., we obtain
G, ()= ddd +27T;VI 7 -coth wLi N .
& 3 | g 4

Atlate time7 >> /[3,

we find a linear 7 behavior:
Vv,  2x*V
+ ¥l

8& /3
(We expect a half of the above

Goatp) =

result for quantumquenches.)
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Real time behavior

By setting 7 = —i7,., we obtain
, |
G/M(IE)ZEVI +2;’Z-2V1 t-coth4m— ) .
& [ | g 4
Atlate time7 >> /[3,
we find a linear 7 behavior: -k - ---t>>B
Vv, 2x°V,

G, (1)~ —L+ L7

/1/1( E) 88 /82
(We expect a half of the above e, t=0

(1)

result for quantumquenches.) ‘ Yorrp
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Holographic Dual

The TFD state is dual to the eternal BTZ BH. [maldacena 2001]
The information metric is dual to the volume of the
maximal slice which connects the two boundaries.

= We can get a result V=V(t),
described by integrals.

l’ lf. Similar to [Hartman-Malcacena2013].
CFTA CFTB 0 o) ome
\ ~m -r, =iI7 i
wh ¢ ( v smh”(2p sn? (2x, smh” (2p )
/ . \ h r L ~
t /. o ‘m..g. - - —
\ n?(2 P
/ nt g/ 1 sanh 2
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Comparison between Holographic and CFT result

Blue : Vol(X)/R ¢!

AdS
\(@‘3 _~ The functional form
,35‘0 almost coincides
- O\ ~ .
&\\0 up to a small discrepancy.
" Vol(Z)/R4L ~ = ¢
oS- > 0 ( ) AdS ~ T -
/ T
o 2 2
2G,, = —1".

3
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Comparison between Holographic and CFT result

Blue : Vol(X)/R ¢!

AdS
Red : 2G ot
,0@‘3 _~ The functional form
1 5 e v‘tp‘ . .
,a_(‘° almost coincides

-\ ~ -

&\\0 up to a small discrepancy.
: " Vol(Z)/R 4L ~ = -

0s /“ O ( ) AdS 7 ; - .

P 2
t 2G}./1%§_t—'
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Comparison between Holographic and CFT result

Blue : Vol(X)/R ¢!

AdS
\(@.‘3 _~ The functional form
S .
,a_(‘° almost coincides

- O\ ~ .

&\\0 up to a small discrepancy.
' " Vol(Z)/R4L ~ grz

0s /" 0 ( ) AdS e 72- , 2

P 2
t 2Gﬂ.ﬂ.z§t—'
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(B) Conclusions

* In addition to entanglement entropy, the quantum information
metric is a useful quantity which connects between quantum
information of a QFT and the geometry of its gravity dual.

* We conjectured the holographic formula of information metric

(using a hard-wall approximation) .

cf. Susskind’s conjecture:
G —, Vol,.) e |
an = Hg - R The volume is dual to complexity.
AdS

Any connection to our results ?

* We also computed the information metric purely in CFTs
which nicely agree with our holographic formula.
= (,, ¢t is universal for any CFT TFD states.

Pirsa: 15080059 Page 36/37



Future problems

* CFTs on compact spaces
= no universal behavior and the results depend on the
spectrum of CFTs. Can we use large N limit ?

* More time-dependent examples of gravity duals,
such as quantum quenches, local quenches etc.

* Tensor network interpretation
In MERA, we may naturally identify:

(] @) =

Vol[time slice]

d+1
RAdS

G, , «c #Vertices ~
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