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Abstract: This year marks the 404€™th anniversary of the Unruh effect as described at the first Marcel Grossmann meeting in 1975. We revisit it
with emphasis on the observability issue which might be a concern at first sight, since the linear acceleration needed to reach atemperature 1 K is of
order 1020 m/s*2 . We close the talk by emphasizing that the Unruh effect does not require any verification beyond that of relativistic free field
theory itself. The Unruh effect lives among us.
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The Unruh effect in a nutshell

Uniformly accelerating observers in Minkowski vacuum experience a thermal bath of
elementary particles at a temperature proportional to their proper acceleration.

Event Horizon

Accelerating
Observer
in Yacuum

Unruh
Radiation

Stanford Linear Accelerator Center courtesy
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Chronology

» (November/1972) Steve Fulling (UW. - Milwaukee) submits “Nonuniqueness canonical field
quantization in Riemaninan space- time”, Phys. Rev. D, 7, 2850 (1973).
* p.2854: gives the Bogoliubov coefficient V(i,j) ("B;;") relating Minkowski and Rindler
vacua and states that it does not vanish: “The notion of particle is completely different in
the two theories”.
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Chronology

» (November/1972) Steve Fulling (UW. - Milwaukee) submits “Nonuniqueness canonical field
quantization in Riemaninan space- time”, Phys. Rev. D, 7, 2850 (1973).
* p.2854: gives the Bogoliubov coefficient V(i,j) ("B;;") relating Minkowski and Rindler
vacua and states that it does not vanish: “The notion of particle is completely different in
the two theories”.

» (August/1974) Paul Davies (King’s College - UK) submits “Scalar particle production in
Schwarzschild and Rindler metrics”, J. Phys. A: Math. Gen., 8, 609 (1975).
* p.614: “to such an (accel ) observer the wall surface would appear to have a
temperature of acceleration/2x... The apparent production of particles is somewhat
paradoxical, because there is no obvious source of energy for such a production”.
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Chronology

» (June/1981) Geoffrey Sewell (Q. Mary College - UK) submits “Quantum fields on manifolds:
PCT and gravitationally induced thermal states”, Ann. Phys. 141, 201 (1982).
* p.204: “for uniformly accelerated observers, ... the Bisognano-Wichmann theorem
implies the Unruh effect”. [Bisognano and Wichmann, J. Math Phys. 17, 303 (1976).]
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Nontrivial & Nonintuitive

) :‘u.a‘-’f\:ﬂ S, ..2 \

J ILJ' Mar '[ u/“//(")f “'ﬁx;"m.)

R. Feynman last blackboard — May/1988

Interestingly, 40 years later, there is still much confusion about what the Unruh effect is (and is not).
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The observability issue

* Bell and Leinaas pioneered the attempt to explain experimental data in terms of the Unruh effect,
namely, the depolarization of e~ s in storage rings, with partial success; recall that the Unruh
effect was derived for linearly accelerated observers. ). Bell and ). Leinaas, Electrons as accelerated
thermometers, NPB 212, 131 (1983).

Pirsa: 15080034 Page 10/57



The observability issue

ALTHOUGH

“Direct” experimental confirmation is difficult because the linear acceleration needed to reach a
temperature of 1 K is of order 10%° m/s?. (Sprinters do not sweat because of the Unruh effect.)

IT HAPPENS THAT

The Unruh effect does not require any verification beyond that of free QFT itself.

Pirsa: 15080034 Page 11/57



Accelerated proton decay in Minkowski vacuum

» R. Muller, Decay of accelerated particles, Phys. Rev. D 56, 953 (1997)

”

D. Vanzella and GEAM, Decay of accelerated protons and the existence of the Fulling-Davies-Unruh effect, Phys. Rev. Lett. 87,
151301 (2001).

Pirsa: 15080034 Page 12/57



Inertial observer calculation

ds® =-dt’ +dx” +dy” +dz’—,

B'd]'y()n fields: LCDIOI'I fields: l/}(f. X,V Z)= ZJ.(IA (}Anl//;\;rm + (-’;nl//‘ me:]
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Inertial observer calculation

ds® =-dt’ +dx* +dy” +dz’

t

Baryon fields: Lepton fields: y}(r..\‘._r.:):ZJ.d:k ‘.’m‘/’l;m+‘-'A-f-.‘/"x”;]

Pirsa: 15080034 Page 14/57



Inertial observer calculation

ds® =-dt* +dx” +dy’ +dz’[—;

1 29 . + . ¥ . — — 3 1 2 (+a) e (=)
Baryon fields: Lepton fields: !;/(I..\._\.H)—Zj’d kla, wi ™" +¢ v, n]
Weak interaction effectiveaction: §, = J‘cl.r4 \/::V? r" (C'. -C, ) )y?,, + ”-('-J
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Inertial observer (tree-level) calculation

é‘ 10
0
-0.5-‘-.(5.“-0-5-.-‘1-A--Al.)‘-l-z
log[a/(1MeV)]
y» a . I s 1]
bt _ G. ma o m [3/2 2
- 7/2 _xAM/a 24 2 |y 4 / : .
67" “e ' a 1/2 =3/2 3/24+iAM/a 3/2—-iAM/a
c,=c, =1, G,=17x10" GeV OAM =m, —-m, =13MeV, m =05MeV, m, =0
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Inertial observer (tree-level) calculation
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Rindler observer calculation

ds* =e** (-dr’ +d &) +dx’ +dy_‘;1

J

4
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Rindler observer calculation

ds* =e** (-dr’* +d &%) +dx’ + dy“\ ds” =e" (-dr"+d&7) +dx” +dy"|
”l)
- —
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Rindler observer calculation

ds* =’ (-dr’ +d &) +dx’ +dy3} ds® =’ (-dr’ +d&?) +dx* +dy’

-— —
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Rindler observer calculation

ds’* =e** (-dr’ +d &) +dx’ +dy3} ds’ = e’ (-dr’ +d&%) +dx” +dy’

S—

I T

”l)

-—
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Rindler observer calculation

ds® = ¢* (-dr? +d&?) +dx* +dy’|

T
* Rindler observers follow timelike isometries. no :

—— ;
* Because energy is conserved for Rindler observers, p* s cannot 1T
decay through p* — ne* v, according to them.
* If the inertial vacuum were equivalent to the Rindler vacuum, ¢ ;
Rindler observers would conclude that accelerated p*s would not '
decay, which would be in disagreement with our inertial observer
calculation.

——

P
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Rindler observer calculation

ds? = ¢* (-dr? +d&?) +dx* +dy’|

T
* Rindler observers follow timelike isometries. no

—_——
* Because energy is conserved for Rindler observers, p* s cannot
decay through p* — ne* v, according to them.
* If the inertial vacuum were equivalent to the Rindler vacuum, £
Rindler observers would conclude that accelerated p*s would not '
decay, which would be in disagreement with our inertial observer
calculation.

——

p*
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Rindler observer calculation

ds? = &2 (-d7? +d&?) + dx? +dy?

T
* Rindler observers follow timelike isometries. n?
—_—
* Because energy is conserved for Rindler observers, p* s cannot
decay through p* — ne* v, according to them.
* If the inertial vacuum were equivalent to the Rindler vacuum, |
: . $ |
Rindler observers would conclude that accelerated p™s would not
decay, which would be in disagreement with our inertial observer
calculation.
++ |
P
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Rindler observer calculation

ds’ =™ (-dr” +d&%) +dx’ +dy’|

* Rindler observers follow timelike isometries.

* Because energy is conserved for Rindler observers, p* s cannot
decay through p* — n%e* v, according to them.

* If the inertial vacuum were equivalent to the Rindler vacuum,
Rindler observers would conclude that accelerated p*s would not
decay, which would be in disagreement with our inertial observer
calculation.

* The Unruh effect will be necessary to make inertial and uniformly
accelerated observers description consistent with each other.

T

Unruh thermal bathof e, e*,v,, v,
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Rindler observer calculation

0 0
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Rindler observer calculation

Baryon fields: o Lepton fields:

Weak interaction effective action :

1’ ('/ ‘f 1’/ _' {

——

w(r,§,y,2)= Zjd:k dza[l;k oo Xk oo *‘}f oo Xt - ﬁ]

g, = _[c/.\‘i\/—ig[(ﬁ( y (c" -c,y )'/}1 . H.('.J
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Rindler observer calculation

Baryon fields: o Lepton fields:

Weak interaction effective action :

v ('/ ‘f 1’/ . {

——

U}(r- -_-:-._“.:) = ZJ.'{!:A ({{U[/;k oo ZA oo + (}J.' oo Z k, ~-o n]

S', = _[c/.\‘J\/—ig[(ﬁ‘ y" ((" —('d}’s)y}l . H.c'.J
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Rindler observer (tree-level) calculation

Decay amplitude

Ve —25n" 0
Al Ve = <n %

Si|Peor,)

0 ok o,
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Rindler observer (tree-level) calculation

Decay amplitude

‘4}" ¢ — DH“I‘ = <”“l'

Si|Peors,)

e wk a,
T1no
.
/1", Spectral distribution
¢ dr’ O”“ d rx o et 3
: - - d(J‘I do A" l
cf‘/\"c/“/\'1 dr = 0 '
=+ .
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Rindler observer (tree-level) calculation

Analogously...

£ 1_',./ g 1/ ( g

——

rp e @nr"tj l—-p'l" @-»r:"n" l—-,n"- v, -@-n:“

Dominant for Ty, > m,, —m, + m, Dominant for T, < my, —m, + m,
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Rindler observer (tree-level) calculation

’ v Ve, ’ ‘, » ’ d ]‘
Proton mean proper lifetime: 7” ©., :[l” @ +I7 " @ +7er O ]
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Rindler observer (tree-level) calculation

’ v Ve, ’ ‘, » ’ d ]
Proton mean proper lifetime: 7” O. :[l” @, +I7 " @ +7e" O ]

. +2 3 2 2 g 9 )
[ O _ G'm.a G m; |3/ 2 4
7/2 =AM /¢ 24 2 / / ) " / . ;
167" “e™Y' a - |1/2 =3/2 3/2+iAMM/a 3/2-iAM /a

Identical to the inertial observer result

EAM “Decay of accelerated protons and the existence of the Fulling-Davies-Unruh effect”, Phys. Rev. Lett. 87,
ida “Analytic evaluation of the decay rate for an accelerated proton”, Phys. Rev. D 67,

151301 (2001), H. Suzuki and K Yan
065002 (2003).
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Rindler observer calculation

¢ F«/ ; 1/ N ¢

— —_——
—— ]J+ 1)+

Baryon fields: o Lepton fields: y(7,&,v,2)= Zj‘l:k dza[hk oo Xt oo Tt on Xk o n]

Weak interaction effectiveaction: S, = _[c/_\‘J\/—gl‘F r" (‘l —C,r )‘/}1 + H-('-J
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The Unruh effect as an “inertial force”

Inertial observer description

+ a 0 + ,
4 n-+e +» Ciéncia Hoje Courtesy

p +v —@—)n" +e
+e +V, —®—)n"

P
Uniformly accelerated observer description
O G ma a0l m13/2 2
T ~r—Tv (:_ N - . . .
loxr "¢ ta |1/2 3/2 3/24iMM/a 3/2-iAM /a )
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io;
I

The Unruh effect as an “inertial force”

Inertial observer description

Inertial observer description I'.‘“ = mada. !2 = const

p—on"+e +v

Ciéncia Hoje Courtesy

.
r fic

p te +V, : »n F. =-2mQxv'—mQ x (Qxf')

fict —

e D)0, S =5
p +v, n +e /'” _n“;@

Uniformly accelerated observer description
Circularty moving observer description

G ma a0l m 3 \ . f - ~
2 G| ™ | P =7(5,,Q)
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Pirsa: 15080034 Page 36/57



Pirsa: 15080034

The Unruh effect in laboratory

The fact that the Unruh effect is a necessity to free QFT, does not make the search for lab
phenomena which may be explained more “naturally” w.r.t. Rindler observers in terms of
the Unruh effect less interesting . This is not trivial:

« p*satlHChave ajyc = 1077 MeV K m, —m, + m, = 1.8 MeV = 77" 33 1y, . Vanzella
nd AM, Weak decay of uniformly accelerated protons and related processes, PRD 63, 014010 (2001).

« Cosmic p*swith E, = 1.6 x 10'* eV in pulsars with magnetic fields of B = 10**G have
apyisar = 110 MeV »> my, —m, + m, = 1.8 MeV - 77" = 10~7s = 1% of incident protons

would decay. D. Vanzella and GEAM, Weak decay of uniformly accelerated protons and related processes, PRD 63, 014010
(2001).
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The Unruh effect in laboratory

The fact that the Unruh effect is a necessity to free QFT, does not make the search for lab
phenomena which may be explained more “naturally” w.r.t. Rindler observers in terms of
the Unruh effect less interesting . This is not trivial:

« p*satlHChave ajyc = 1077 MeV K m, —m, + m, = 1.8 MeV = 77" 33 14, . Vanzella
r EAM, Weak decay of uniformly accelerated protons and related processes, PRD 63, 014010 (2001).

* Cosmic p*swith E, = 1.6 x 10'* eV in pulsars with magnetic fields of B = 10**G have
apyisar = 110 MeV » my, —m, + m, = 1.8 MeV - 77" = 10~7s = 1% of incident protons

would decay. D. Vanzella and GEAM, Weak decay of uniformly accelerated protons and related processes, PRD 63, 014010
(2001).
* The analogous process e~ — u~ may be observable in IceCube. M. Lynch, Electron decay at icecube,

arXiv:1505.04832 (2015).
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Reviews

» S. Fulling, G.E.A.M., Scholarpedia, 9(10):31789 (2014).

» |. Pefa and D. Sudarsky, On the possibility of measuring the Unruh effect. Found. Phys. 44, 689
(2014).

» L. Crispino, A. Higuchi, G.E.A.M, Rev. Mod. Phys. 80, 787 (2008).
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The Unruh effect in ultra-intense lasers

* Accelerated e~ s would quiver as they back react to radiation emission. The observation of such
quivering would be naturally interpreted by Rindler observers as the e "s interaction with the
Unruh thermal bath. p. Chen and T. Tajima, Testing Unruh Radiation with Ultraintense Lasers, PRL 83, 256 (1999).

* Schutzhold , Schaller, and Habs proposed to look for pairs of correlated photons emitted from
uniformly accelerated charges, which would correspond in the Rindler frame to the scattering of

Rindler photons by the charge. r. schitzhold, G. Schaller, and D. Habs, Signatures of the Unruh effect from electrons
accelerated by ultrastrong laser fields, Phys Rev. Lett. 97, 121302 (2006).

ds’ =™ (-dr’ +d¢& )+d\ +dv

| 4P T

ey

Unruh thermal bath of Rindler photons
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The Unruh effect in ultra-intense lasers

* Accelerated e~ s would quiver as they back react to radiation emission. The observation of such
quivering would be naturally interpreted by Rindler observers as the e "s interaction with the
Unruh thermal bath. p. Chen and T. Tajima, Testing Unruh Radiation with Ultraintense Lasers, PRL 83, 256 (1999).

* Schitzhold , Schaller, and Habs proposed to look for pairs of correlated photons emitted from
uniformly accelerated charges, which would correspond in the Rindler frame to the scattering of

Rindler phOtOﬂS b\/ the charge. R. Schutzhold, G. Schaller, and D. Habs, Signatures of the Unruh effect from electrons
accelerated by ultrastrong laser fields, Phys. Rev. Lett. 97, 121302 (2006).

ds’ = e’ (-dr? +d&?) +dx* +dy’| ds’ = -dt’ +dx’ +dy’ +dz’
' t

ey

Unruh thermal bath of Rindler photons
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The Unruh effect in ultra-intense lasers

e ——e +2y

|lds: =-dt” +dx’ +dy’ +dz’|
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The Unruh effect in moderate electric fields

- - - a -
e ——e +y e ——e +2y

ds’ =-dt’ + dx* +dy’ +dz’| ds?® =-dt’ +dx? +dy” +dz’|
i ; wall iy ; i

AN

easier to observe
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Rindler observer calculation

e ¢ e ;

Charge current : @ Photon field: A“(7,&,y,z)= ZJ‘d:k G[Du’m a, ., A+ H.(-.]

. . -] 4 -
Interaction action: §, = J(h‘ v—g -1 !
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Rindler observer calculation

. (_!7 { (Ji {

Charge current : @ Photon field: A“(7,&,y,z)= ZJ‘d:k G[Du’m a, ., A+ H.(-.]

. . o~ 4 -
Interaction action: §, = J(h‘ v—g ‘1 !
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Rindler observer (tree-level) calculation

T Absorptionamp litude
‘41’-‘ ; e o <(, “S'i |() :/)
é L
5
E 1= . .
1—.2 d § Absorption probability per &
-5

4 I O
{dl\ (/rzbdwl .
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Rindler observer (tree-level) calculation

Tl _ Absorptionamp litude
_ .4‘:.( 3 e — <(, ‘S‘f‘c :/>
2
I <o
;z’ 1| % | 2| § Absorption probability per &
=

w Oy
S AP bk drzbc ad

HH((U )— (;_n®__]

oY
i bt
T = do,slo, - E)(®)

d°k,
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PREDICTION

Inertial observers must detect the following photon emission rate from a uniformly accelerated charge :

e R
dk d1°a
T T
+— ¢
1e : e ;
y
arede : ar< e o |
- = — ‘l\l(/\' "H S =——|K,(k "l
d’k 87°a ' dk d7r°a '
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Inertial observer calculation

ds” =-dt” +dx” +dy” +dz"[—,

Charge current : Photon field: A"(r,x,y,z)= Zjd 'k a., A7, + H.c'.]

. . ] 4 -
Interaction action: §, = J(h‘ v—£g ‘1 !
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Inertial observer calculation

[ds“ =-dt’ +dx’ +dy’ + dz“J :

2 \l\',(k '“1: \/l
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Rindler observer (tree-level) calculation

3 Absorptionamp litude
_ .4‘:.‘ 3 e — <(, ‘S‘f‘c :/>
g
8 o
,—.Z’ 1| % | 2| 4§ Absorption probability per £
=

| | e ®
_ dr
L Lok drz@dm:{ .

HH((U )— ()—n@_—]

oY
i bt
T = doslo, - E)((5)

d°k,
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» Conclusion: The usual bremsstrahlung radiation may be seen as routine lab
manifestation of the Unruh effect.

» This also answers (in the negative) the long standing question whether or
not coaccelerated observers with a charge see radiation.

»

The fact that inertial observers do see radiation emitted from uniformly accelerated
charges while Rindler observers do not is possible because “in general different observers
extract distinct particle contents from the same field theory”. Steve Fulling Phys. Rev. D, 7,
2850 (1973).

The interpretation that every radiated finite-energy photon as described by inertial
observers corresponds to a zero-energy Rindler photon emitted (or absorbed) to (or from)
the Unruh thermal bath as described by coaccelerated observers, was only possible after
the Unruh effect. Bill Unruh, Phys. Rev. D, 14, 870 (1976).
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# Conclusion: The usual bremastrahlung radiation may be seen as routine lab
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» Conclusion: The usual bremsstrahlung radiation may be seen as routine lab
manifestation of the Unruh effect.

» This also answers (in the negative) the long standing question whether or
not coaccelerated observers with a charge see radiation.

e

The fact that inertial observers do see radiation emitted from uniformly accelerated
charges while Rindler observers do not is possible because “in general different observers
extract distinct particle contents from the same field theory”. Steve Fulling Phys. Rev. D, 7,
2850 (1973).

The interpretation that every radiated finite-energy photon as described by inertial
observers corresponds to a zero-energy Rindler photon emitted (or absorbed) to (or from)
the Unruh thermal bath as described by coaccelerated observers, was only possible after
the Unruh effect. Bill Unruh, Phys. Rev. D, 14, 870 (1976).
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Final Conclusion: the Unruh effect lives among us
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Final Conclusion: the Unruh effect lives among us
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Thank you very much!
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R. Feynman last blackboard — May/1988

irsa: 15080034 Page 57/57



