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#Unruhfest

» Particles are what makes Cooling is done by a
particle detectors click thermal machine

« Time is what clock ticks Computing is done by a
measure Turing machine

Work is a physical process
(raising weight)

Thermodynamics is defined
by what an experimenter
can do (ultimate limits)
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15t wave
Carnot (1824)
Joule (1843)
Kelvin (1849)
Clausius (1854)

2" wave
(stat mech)
Maxwell (1871)
Boltzman (1875)
Gibbs (1876)
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Thermodynamics as
information

Maxwell
Szilard

Landauer

Bennett
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Outline

® Recast laws of thermodynamics
® State transformations: 2™ laws: F — Fa

® Many families of 2" laws depending oh
“how cyclic” our process is

® Time for transformation: quantitative 3" laws
® Work of transition: W: (p,H)— (o,H’)

® Class of operations: 0", 1 law

® Tools from quantum information theory
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Quantum Thermodynamics

e Gibbs state with full information
e Gemmer, Michel, Mahler (2005), Popescu, Short, Winter (2006)
Meaning of Negative Entropy, conditional erasure
e Del Rio et al. (2011), Faist et al. (2013)
Smallest possible fridges
e Linden, Popescu, Skrzypczyk (2010)

Deterministic tranformations
® HHO (2003), Dahlston et al. (2010), HO (2011), Aaberg (2011), Egloff et al. (2012)!
Average work extraction

® Brandao et. al. (2011), Skrzypczyk et. al. (2013)
Non-ideal heat baths, correlations, entanglement
e Reeb, Wolf (2013); Gallego et. al. (2013), Hovhannisyan et. al. (2013), Mueller et. al. (2014)

Thermalisation times
Micro-engines & machines
® Scovil & Schultz-Dubois (1959), Howard (1997)

® Rousselet et al. (1994), Faucheux et al. (1995), Scully (2002)
Pioneering works

e Ruch and Mead (75), Janzig et. al. (2000)
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Classical thermodynamics

*It's called thermodynamics because we take
the thermodynamic limit! I

*System size, number of particles — o

*Small fluctuations

* Thermodynamics in the opposite extreme?
Finite size (micro, nano) and/or quantum
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Quantum thermodynamics

* No thermodynamic limit
« Coherences in energy eigenbasis I
* More precise control

* Rigorous theory

» Large fluctuations
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3 laws of thermodynamics

If R+ is in equilibrium with A2 and Rs then R: is

in equilibrium with Rs
i

dE =dQ-dW (energy conservation)

Heat can never pass from a colder body to a
warmer body without some other change
occuring. — Clausius

One can never attain T=0 in a finite number
of steps
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1) dE=dQ-dW (energy conservation)

I

e

Not a consequence, but part of the class of operations
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The second law

Heat can never pass from a colder body to a warmer body
without some other change occurring — Clausius
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The second law

Heat can never pass from a colder body to a warmer body
without some other change occurring — Clausius
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The second law
(+ first [aw)

In any cyclic process, the free energy of a system can

only decrease.
i

L)
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Free Energy

s |

— outr ok gq'u\\\'\\or\m
F=E-TS

Wgain - F(p initial) — F(p final)
P initial = O final Only if AF20
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Free Energy
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What is Thermodynamics??

Catalytic Thermal Operations A-

* (P § HS)
P s = resource

Hs = Hamiltonian
® adding free states 1r
* work system W

® borrowing ancillas (working body) and returning them in
the “same” state o

® energy conserving unitaries U
(1stlaw) [U, Hs+ Hv+ Hr+ H] =0

® tracing out  (trash)
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Thermal Operations
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1 law of quantum thermodynamics
Class of operations

0) The only free state T which doesn’t enable arbitrary
transitions is the Gibbs state
1) Energy conserving unitaries

I

State Transitions

2) [cyclic]* ps must get closer to 1s in terms of free
energy type distances Fa(ps || Ts) a=0

2') [single system] psmust get closer to s in terms
thermo-majorisation

*depends on how cyclic
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Zeroeth Law

After decohering in the energy eigenbasis, one can extract
work from many copies of any state which is not passive

(pi < pjiffE;, > E;)

[just swap levels i and j, while raising the weight, and
repeat over many blocks]

Many copies of any state except the thermal state results
in a state which is not passive after decohering (Pusz and
Woronowicz (78), Brandao et. al. 2011)

This gives us an equivalence class, of allowed free states
labelled by (7; , H)

Any other free state allowz ZEOSary transitions.
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Zeroeth Law

After decohering in the energy eigenbasis, one can extract
work from many copies of any state which is not passive

(pi < pjiffE;, > E;)

[just swap levels i and j, while raising the weight, and
repeat over many blocks]

Many copies of any state except the thermal state results
in a state which is not passive after decohering (Pusz and
Woronowicz (78), Brandao et. al. 2011)

This gives us an equivalence class, of allowed free states
labelled by (7; , H.)

Any other free state allows arbitrary transitions.
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The second laws (psuedo-classical)

T -
Thermal ~ FalpllT) = 3—log trp°r'~* — kTlogZ o >0

monotones: F, (P||’T) _ F(p)

® Ordinary 29 |law is one of many
® In macroscopic limit, weak interactions, all F, ~ F
® For p block diagonal, 2" law is iff
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Wist= T,

Fy = kT logmin{\: p < A7} — kT log Z

Fo = kT logz h(w’g1 E‘r_‘)(’)——;iE,-
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2" law examples

For H=0, diagonal states:

» largest p(E) can't get larger
* rank(p) can't get smaller
» sum of the largest k p(E)'s can't get larger (majorisation)

For diagonal states:

« largest p(E)erE

. Fo = kT logz h(w, g, Ei)f-’_'HE' can't get larger
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Quasi-classical 2nd laws

For degenerate energy levels

X N'O', y iff x>y Zp 2 Zq forallk Horodecki JO (2003)

N) ’rl

I

Uling

P(Ei,g1)e” > P(Ey, g2)e"® > ... - ordered conjecture of Ruch & Mead (75)
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Work distillation (H=0)

p(L)=1

L R

Waist=kTIn(2) m




Work distillation

p(1)=2/3
p(3)=1/6
p(4)=1/6

Waist=kT[In(5)-In(3)] T( - / : /

3y 4
=kT[In(d)-In(rank)]

Pirsa: 15080026



Work of formation

~
o(L)=2/3
o(R)=1/3

Wdist=0
Wform=kT|n(2/3)
=KTIN(Piargest)
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The second law
(+ first [aw)

In any cyclic process, the free energy of a system can

only decrease.
i

ol
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How cyclic?

On ® Ps = Oout ® bs

|| Oin-— Uoutll, S €

Embezziement

O in= Z !|,- ><i| c.f. Van Dam, Hayden (2002)
L

||Uout . Uin”, <€

0in®_

2

— Oout ® |0><0|
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Three families of 2nd laws

1) All transformations are possible
||Cin = Oout]], € €

2) Ordinary 2nd law: Fi(o || T) goes down
||O in = Oout||, € €/10Q catalyst

8) Fu«p || ) mustgodown oa20
Small work distance

Dyork (Uin > aout) $ = chEr;fO [Fa(oin||T) = Faloou||T)]
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2" laws : recent & future
directions

 Laws for coherences
- Brandao et. al. (2003)
- Cwiklinski, Studzinski, Horodecki, JO (1405.5029) qubit etc.
- Lostaglio et. al.(x2)
- Thermal Machines with coherences (Korzekwa, Lostaglio,
JO, Jennings)
* Probabilistic transformations
- Perry, Alhambra, JO

 Understanding catalysis
- Ng et. al., Lostaglio, Mueller, Pastena
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Quantitative third law
(Masanes, JO; quant-ph/1412.3828)

Heat Theorem (Planck 1911): when the temperature of a
pure substance approaches absolute zero, its entropy
approaches zero 1
Unattainability Principle (Nernst 1912): any
thermodynamical process cannot attain absolute zero in a
finite number of steps or within a finite time

s ol
t2d+1
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Thermal Machines

* Like Turing Machines
i

* In a finite time, they interact with a finite volume and
inject a finite amount of work

1
. >yl
%

 Bath of volume V has sub-exponential density of states
Q(E)
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Conclusions

Laws of thermodynamics 1st law
— Thermal Operations (U, T, tr)
O": T must be thermal for non-trivial theory
2"* : Fa(p || T) must go down 0 < o
* . embezzlement
Quasi-classical states: 2™ laws are also sufficient
Coherences: poorly understood
Probabilistic transformations
Many free energies —— irreversibility
Quantitative third law
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Probabilistic transformations
(Alhambra, Perry, JO)

P w0

P —P'= po+(1l-p)X

Vl(p)zz 1;

[
i=1

2Wp=>0 < p< 2_W0:>p
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