Title: TBA

Date: Aug 10, 2015 10:40 AM

URL: http://pirsa.org/15080015

Abstract: TBA

Pirsa: 15080015

### In standard story, principles that shape the thermal history of IGM are simple

elucidated largely in Miralda-Escude & Ostriker '93 and Hui and Gnedin '98)



Hui & Haiman '03

- ionization of hydrogen (and an e<sup>-</sup> of He) around galaxies heats gas to 20-30,000 K, with different regions heated at different times
- subsequently, gas cools by Compton cooling and adiabatic expansion
- residual photoheating as gas recombines and is ionized
- helium doubly ionized later by quasars. We know a lot about quasars.

Pirsa: 15080015 Page 2/18

# the thermal history of the IGM

Matt McQuinn
University of Washington

Anson D'Aloisio, Phoebe Upton Sanderbeck

Disclaimer: There will be astrophysics!

Pirsa: 15080015 Page 3/18

### In standard story, principles that shape the thermal history of IGM are simple

elucidated largely in Miralda-Escude & Ostriker '93 and Hui and Gnedin '98)



Hui & Haiman '03

- ionization of hydrogen (and an e<sup>-</sup> of He) around galaxies heats gas to 20-30,000 K, with different regions heated at different times
- subsequently, gas cools by Compton cooling and adiabatic expansion
- residual photoheating as gas recombines and is ionized
- helium doubly ionized later by quasars. We know a lot about quasars.

Pirsa: 15080015 Page 4/18

# How the IGM temperature is measured



Many attempts, especially around turn of the century: Schaye et al 00, Ricotti et al 00, McDonald et al 00, Zaldarriaga et al 01, Lidz et al '10 -- factor ~2 precision

Pirsa: 15080015 Page 5/18

## What we do (to compare in T<sub>0</sub> space)

- follow density evolution of Lagrangian gas elements using Zeldovich approximation
- heat and cool gas based on simple rules
- extrapolate measured  $T(\Delta^*)$  to  $T_0$  using effective  $\gamma$  from model
- plot "average" temperature (Becker method essential measures average temperature)

Pirsa: 15080015 Page 6/18

## Let's try to model this considering only hydrogen reionization

varying postreionization ionizing background

varying redshift of reionization

varying temperature of reionization



extended histories:
assume gas is locally
heated to T<sub>rei</sub>, but
that gas elements are
ionized over some
history

Pirsa: 15080015 Page 7/18

#### helium reionization model



two phase model: local ionization near quasar plus uniform heating of Hell gas by (hard) long mfp photons

Pirsa: 15080015 Page 8/18

#### helium reionization model



two phase model: local ionization near quasar plus uniform heating of Hell gas by (hard) long mfp photons

Pirsa: 15080015 Page 9/18

### full history

assuming linear Hell ionization history that spans 2.8-z<sub>rei</sub>



using best constraints on quasar emissivities



Sanderbeck & McQuinn '15

Pirsa: 15080015 Page 10/18

### z>5 Ly-α Forest

Huge variance in slightline-to-sightline opacity.



figure from Becker et al 2014

$$x_{\rm HI} = \frac{\alpha(T)n_e}{\Gamma}$$

Fluctuations can owe to fluctuations in density, ionizing background or temperature

#### The PDF of $\tau_{\text{eff}}$ =-ln[<Transmission>],

where Transmission is measured in 50/h Mpc segments.



dashed = simulation with density fluctuations only solid histogram = measured PDF

Pirsa: 15080015 Page 12/18

### People have been trying to explain with fluctuations in UV background: fixing sources, changing mean free path

$$x_{\rm HI} = \frac{\alpha(T)n_e}{\Gamma}$$
  $\Gamma \propto \text{source emissivity} \times \text{mean free path}$ 

#### cummulative $P(\tau_{eff})$ @ z=5.6



Becker et al 2014

#### What mfp=9.5 Mpc/h requires



Pirsa: 15080015 Page 13/18

## People have been trying to explain with fluctuations in UV background: fixing mean free path, changing rarity of sources

Choudin et al '15 found they could only reproduce level of fluctuations at z=5.6 with source density of 2 per (100/h Mpc)<sup>3</sup>.





Choudin et al. '15

Pirsa: 15080015 Page 14/18

# Structure determined by source clustering

radiative transfer simulation

radiative transfer simulation

seminumeric model



each panel 100/h Mpc

Zahn, Mesinger, MM, et al '12

Pirsa: 15080015 Page 15/18

### Our interpretation: temperature fluctuations



D'Aloisio, MM & Trac '15

Pirsa: 15080015

### Our interpretation, temperature fluctuations



D'Aloisio, MM & Trac '15

Pirsa: 15080015 Page 17/18

#### Conclusions

- Thermal history in simple models in excellent agreement with measurements
- ~leV per particle can be injected into mean density IGM by z=2 by something other than photoheating
- the large opacity fluctuations in the z>5 IGM owe to the temperature fluctuations that are an inevitable byproduct of reionization

Pirsa: 15080015 Page 18/18