Date: Jul 08, 2015 10:15 AM

URL: http://pirsa.org/15070023

Abstract:

Pirsa: 15070023

Pirsa: 15070023

Pirsa: 15070023 Page 3/43

Not quite done...

Big Problems!

- ...strong CP problem...
- ...dark matter...
- ...CP of the universe...
- ...origin & nature of neutrino mass...

minor issues...

... "naturalness" & hierarchy (problems)...

TRISEP 2015 2

Pirsa: 15070023 Page 4/43

How to look for new physics

- Go to higher and higher energies!
 - directly produce new particles at scales unobtainable before!
 - has worked in the past...

TRISEP 2015

Pirsa: 15070023 Page 5/43

How do discover new physics @ low energies...

Pirsa: 15070023 Page 6/43

How do discover new physics @ low energies...

Pirsa: 15070023 Page 7/43

Pirsa: 15070023 Page 8/43

How do discover new physics @ low energies...

Pirsa: 15070023 Page 9/43

How to look for new physics

- Go to higher and higher energies!
 - directly produce new particles at scales unobtainable before!
 - has worked in the past...
- Go to higher and higher intensities!
 - rare production modes
 - rare decay modes
 - precise measurements of SM predictions
- Look somewhere "new"***!
 - neutrinos!
 - particle-astrophysics

***neither of these are new, but definitely room for growth

TRISEP 2015 8

Pirsa: 15070023 Page 10/43

How to look for new physics

- Go to higher and higher energies!
 - directly produce new particles at scales unobtainable before!
 - has worked in the past...
- Go to higher and higher intensities!
 - rare production modes
 - rare decay modes
 - precise measurements of SM predictions
- Look somewhere "new"***!
 - neutrinos!
 - particle-astrophysics

***neither of these are new, but definitely room for growth

TRISEP 2015 8

Pirsa: 15070023 Page 11/43

Searching For BSM @ "low-energies"

- Low Energy != Low Scale
 - Loops are our friend!

...high mass scales of NP particles in the loops is not suppressed like they are @ tree level (direct production)

Also! Typically don't have tree-level SM processes to compete against→lower background

TRISEP 2015 10

Searching For BSM @ "low-energies"

- Low Energy != Low Scale
 - Loops are our friend!
 - Rare or forbidden decays
 - Lepton flavor violation searches
 - precision measurements of well predicted parameters
 - muon g-2
 - CKM unitarity triangle (& related measurements)
- Looking in new places Neutrinos!
 - we haven't fully explored neutrino sector (it's hard)
 - mixing matrix still has many open questions
 - is it unitary? Are there more "neutrinos"
 - what's the CP phase...is it 0? Some other interesting number?
 - What's the deal with the neutrino mass(es)?
 - ordering of masses? SM-like or inverted
 - where does it come from?
- Direct production, but with very intense sources
 - A ton of experiments were done in the old days that looked for crazy things...now we have much more intense beams, better detectors & electronics. Some crazy things may be there!
 - Dark sector searches

TRISEP 2015 11

Pirsa: 15070023 Page 13/43

Searching For BSM @ "low-energies"

- Low Energy != Low Scale
 - Loops are our friend!
 - Rare or forbidden decays
 - Lepton flavor violation searches
 - precision measurements of well predicted parameters
 - muon g-2
 - CKM unitarity triangle (& related measurements)
- Looking in new places Neutrinos!
 - we haven't fully explored neutrino sector (it's hard)
 - mixing matrix still has many open questions
 - is it unitary? Are there more "neutrinos"
 - what's the CP phase...is it 0? Some other interesting number?
 - What's the deal with the neutrino mass(es)?
 - ordering of masses? SM-like or inverted
 - where does it come from?
- Direct production, but with very intense sources
 - A ton of experiments were done in the old days that looked for crazy things...now we have much more intense beams, better detectors & electronics. Some crazy things may be there!

12

Dark sector searches

TRISEP 2015

$$|\mathcal{A}_{Tot}|^2 = |\mathcal{A}_{SM}|^2 + |\mathcal{A}_{NP}|^2 + 2Re\left(\mathcal{A}_{SM}\mathcal{A}_{NP}^*\right)$$
If SM is large Tough... $\mathcal{S} \sim \sqrt{\mathcal{L}} \times \frac{|\mathcal{A}_{NP}|^2}{|\mathcal{A}_{SM}|}$

$$S = Significance$$
 $\mathcal{L} = Integrated Luminosity$
TRISEP 2015

13

$$|\mathcal{A}_{Tot}|^2 = |\mathcal{A}_{SM}|^2 + |\mathcal{A}_{NP}|^2 + 2Re\left(\mathcal{A}_{SM}\mathcal{A}_{NP}^*\right)$$
If SM is large Tough... $\mathcal{S} \sim \sqrt{\mathcal{L}} \times \frac{|\mathcal{A}_{NP}|^2}{|\mathcal{A}_{SM}|}$

$$S = Significance$$
 $L = Integrated Luminosity$
TRISEP 2015

13

$$|\mathcal{A}_{Tot}|^2 = |\mathcal{A}_{SM}|^2 + |\mathcal{A}_{NP}|^2 + 2Re\left(\mathcal{A}_{SM}\mathcal{A}_{NP}^*\right)$$
 If SM is (very) small
$$\mathbf{Easy!} \ \ \mathcal{S} \sim \mathcal{L} \times |\mathcal{A}_{NP}|^2$$

$$S = Significance$$
 $L = Integrated Luminosity$
TRISEP 2015

14

Pirsa: 15070023

$$|\mathcal{A}_{Tot}|^2 = |\mathcal{A}_{SM}|^2 + |\mathcal{A}_{NP}|^2 + 2Re\left(\mathcal{A}_{SM}\mathcal{A}_{NP}^*\right)$$

Get tricky, measure the interference. Sensitive to A_{NP} (not ^2)...

If SM is ~ NP

$$S = Significance$$

 $L = Integrated Luminosity$
TRISEP 2015

15

BUT FIRST!

...some words about detectors...

TRISEP 2015

Pirsa: 15070023 Page 20/43

Pirsa: 15070023 Page 21/43

The heart of the detector...

- Material budget is key for tracking detectors
 ▶lighter⇒less MS⇒better position & momentum resolution
- Often Si-based (strips or pixels) for inner trackers; gas-based (straw tubes, drift chamber) for outer (cost-per-channel at issue)

TRISEP 2015 18

Pirsa: 15070023 Page 22/43

A very cool thing.

The LHCb VELO is great example of a "vertex-tracker"...

- encircles the LHC beam, aligned perpendicular to the beam direction
- designed to detect the B-meson decays slightly displaced from primary pp interaction

...retracts during beam tune and closes up for data taking

consists of pairs of radial-axial half-circle Si-strip layers

TRISEP 2015

Pirsa: 15070023 Page 23/43

(EM) Calorimetry

- ...opposite of trackers, put lots of material in the way...want to *cause* showers
 - high density, high Z materials
- Pb glass, PbW, Csl, LAr
- Measure the energy either from Cerenkov radiation/scintillation light (via PMTs or APDs) or from ionization charge (in LAr detectors);

TRISEP 2015

20

Pirsa: 15070023 Page 24/43

Two ECal Examples

BaBar Central Calorimeter

...also key for particle ID (photons! but also electrons/muons/pions).

For hadron calorimetry, missing energy is a huge deal; need XCal systems to be ~hermetic.

Calorimeters tend to be *fast*, both the physics and the readout...trigger systems rely heavily on EM calorimetry

TRISEP 2015 21

Pirsa: 15070023 Page 25/43

Muon ID

"Muons are probably the most important particle in particle physics" — Matt Graham

•need to be cheap because they cover large area; sandwich detectors between iron is very common…if a particle gets all the way though it's a muon

scintillating paddles; Resistive Plate Chambers; streamer tubes...etc

TRISEP 2015 22

Specialists...PID

Particularly at low-ish energies (GeV) it's important to decipher π/K(/p/d etc...);

for π/K separation at GeV, Cherenkov-based detectors are very powerful

23

Pirsa: 15070023

Searching Beyond the Standard Model: Precision Measurements & Rare Decays

Mathew Graham, SLAC TRISEP Summer School Perimeter Institute July 6-17, 2015

Pirsa: 15070023 Page 28/43

Specialists...PID

Particularly at low-ish energies (GeV) it's important to decipher π/K(/p/d etc...);

for π/K separation at GeV, Cherenkov-based detectors are very powerful

23

Pirsa: 15070023 Page 29/43

Searching Beyond the Standard Model: Precision Measurements & Rare Decays

Mathew Graham, SLAC Flavo(u)r TRISEP Summer School Perimeter Institute July 6-17, 2015

Pirsa: 15070023 Page 30/43

This talk...intro: Flavor

flavor, i.e. "u-ness", "μ-ness" etc, is not conserved in the SM there is no mechanism for flavor-changing neutral currents at tree-level in the SM

TRISEP 2015 26

Pirsa: 15070023

(Charged) Lepton-Flavor Violation

$$Br(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U_{\mu i}^{\star} U_{ei} \frac{\Delta m_{i1}^2}{M_W^2} \right|^2 < 10^{-54} \,,$$

this is very, very small

TRISEP 2015 28

Three ways to look for $\mu \rightarrow e$:

These are *complimentary* probes sensitive to different *classes* of models

	$\mu \to 3e$	$\mu \to e \gamma$	$\mu \to e$ conversion
$O_{S,V}^{4\ell}$	✓	_	_
O_D	✓	✓	✓
O_V^q	_	_	✓
O_S^q	_	_	✓

Cirigliano@Beauty2014

TRISEP 2015

29

So far, so nothing.

...current limits on $\mu \rightarrow e$ probe up to **10⁴ TeV**

TRISEP 2015 30

Pirsa: 15070023 Page 34/43

The µ2e Experiment @ FNAL

- crazy, curvy beam line to get rid of any line-of-sight background
- muons steered into Al "stopping" target, where the magic happens

TRISEP 2015 31

Pirsa: 15070023 Page 35/43

Stopping muons

stopped muon replaces an electron in the Al atom...

...most of the time, the muon either is "captured" (releasing v_{μ}) or decays in-orbit

primary background are "DIO" decays...but energy spectrum is different from signal

symmetry magazine

TRISEP 2015

32

Pirsa: 15070023 Page 36/43

μ2e Signatures

 pulsed beam→wait until all is quite

 measure energy of the electron; µ→e conversions peak at ~m(µ) while decays cut off before that

Gives ~ background free signal region

TRISEP 2015 33

Pirsa: 15070023 Page 37/43

μ2e Sensitivity

TRISEP 2015 34

Pirsa: 15070023 Page 38/43

Tau decays too...

TRISEP 2015 35

Pirsa: 15070023 Page 39/43

...many, many tau decays

...these should go down by x10 by ~2025 (Belle-II)

TRISEP 2015 36

Pirsa: 15070023 Page 40/43

(C)LFV Recap

- Charged lepton flavor violating reactions are a great place to look for physics BSM…the first one we see will be a huge discovery
 - very clean theoretically AND experimentally...the limiting factor is how many muons or taus we can produce
 - can probe very high energy scales
 - good complementarity with the energy frontier
- Unfortunately, there's no indication that it's right around the corner
 - that's not a reason to not look...just keep digging!
- Upcoming experiments take a nice step forward:
 - mu2e (FNAL)
 - COMET (J-PARC)
 - mu3e (PSI)

TRISEP 2015 37

Pirsa: 15070023 Page 41/43

CKM Matrix & CP-Violation in the quark sector

$$\approx \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$
$$\lambda = \sin \theta_C = 0.22$$

TRISEP 2015 38

THE Unitarity Triangle

There are 6 triangle relations but most have very un-equal sides== large/small angles == small CPV effects

...EXCEPT!!!

THE UT = Column 1 (\mathbf{d}) * Column 3(\mathbf{b})

Unitarity condition: $V_{ud}V_{ub}^* + V_{cd}V_{cb}^* + V_{sd}V_{sb}^* = 0$

TRISEP 2015

One of the main goals of B-Factories is to see if this triangle closes...if it doesn't, it would be sign of physics beyond the Standard Model!

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005) [hep-ph/0406184], updated results and plots available at: http://ckmfitter.in/2p3.fr

39

Pirsa: 15070023