Title: Exoplanets and the Search for Habitable Worlds
Date: Jun 23, 2015 04:10 PM
URL: http://pirsa.org/15060043
Abstract: Thousands of exoplanets are known to orbit nearby stars, with further evidence that every star in our Milky Way Galaxy has planets. Beyond their discovery, a new era of â€œexoplanet characterizationâ€ \bullet is underway with an astonishing diversity of exoplanets driving the fields of planet formation and evolution, interior structure, atmospheric science, and orbital dynamics to new depths. The push to find smaller and smaller planets down to Earth size is succeeding and motivating the next generation of space telescopes to have the capability to find and identify planets that may have suitable conditions for life or even signs of life by way of atmospheric biosignature gases. After thousands of years of people wondering â€œAre we alone?â $€^{\bullet}$, we are the first generation in human history to be able to make quantitative progress in answering this age-old question.

The Search for Habitable W orlds

\checkmark Thousands of exoplanets are known and small (rocky) planets are common
\checkmark Habitable planets are anticipated
\checkmark The next generation telescopes will each have a chance at finding and/or identifying a habitable world

NOH EYES on EXOPLANETS

Explore a 3D simulation of all planets that have been discovered around other stars
contact us I credits I download

Nay EYES on EXOPLANETS ${ }^{\text {bata }}$

The "habitable zono" of a planetary system refers to the band of orbits where liquid water
could exist on a planet's surface, a condition is could exist on a planet's surface, a condition is
consildered necessary for itif as we know/ For
the sun, that zone raneos from about the orbita considered necessary for lite as we know it. For
the sun, that zone ranges from about the orbital
distanco of Venus to about the orbital distance the sun, that zone ranges from about the orbith
distance of Vonus to atout the orbital distance
of Mars. Compared to the sun's zone, other of Mars. Compared to the sun's zone, other
stars' zones are more elistant and thicker for stars' zones are more distant and thicker for
hotter stars and closer and thinner for cooler stars.

- EXPLORE

$$
\begin{aligned}
& \begin{array}{l}
\because \\
\cdot \\
\cdot \\
\\
\\
\\
\\
\end{array}
\end{aligned}
$$

.

Gl 1214b

GI 1214b

Water planet

Mini-Neptune

Rocky planet

We work to quantify the range of interior compositions possible given a planet mass, size, and incident energy and under the assumption of a spherically symmetric, differentiated planet and common planetary materials
Rogers and Seager (2010)

Thousands of exoplanets are known

- Exoplanets are diverse, covering nearly all masses, sizes, orbits possible
- Small planets (~twice Earth's size) are nearly ten times as common as Jupiter-size planets, challenging formation theory
- For many planets, despite having measured masses and radii, ambiguity remains

habTABLEZONE

Just Right

Planet size: 1-2x Earth

The Habitable Zone

[^0]
The Habitable Zone

[^1]

Water Vapor in Three Hot Jupiters

Madhusudhan et al. 2014

Water Vapor in Three Hot Jupiters

Madhusudhan et al. 2014

GJ1214b: A Current Mystery

Kreidburg et al. 2014

GJ 1214b HST WFC3

A permanent mystery?
For many exoplanets, ambiguity remains in bulk interior or atmospheric compositon or both. Interpretation will remain limited even with precision measurements

Direct Imaging: Suppress Starlight to Find Planets

NASA Probe-Class Studies 2015

[^0]: See Seager, "Exoplanet Habitability", Science May 2013, Pierrehumbert \& Gaidos 2011 , Zsom et al. 2013, Abe et al. 2011

[^1]: See Seager, "Exoplanet Habitability", Science May 2013, Pierrehumbert \& Gaidos 2011 , Zsom et al. 2013, Abe et al. 2011

