Title: Aharonov meets Spekkens: What do quantum paradoxes tell us about the nature of reality?

Date: Jun 24, 2015 02:45 PM

URL: http://pirsa.org/15060036

Abstract:

Aharonov meets Spekkens: What do quantum logical pre- and post-selection paradoxes tell us about the nature of reality?

Matthew Leifer
Perimeter Institute

24th June 2015

Convergence: QF Workshop 6/24/2015 - 1 / 47

Pirsa: 15060036 Page 2/28

Aharonov

LPPS paradoxes

BS Contextuality

Non-BS contextual model

AS Contextuality

Discussion and Conclusions

- "Progress through paradox"^a:
 - ☐ Three box paradox
 - ☐ Quantum pigeonhole principle
 - Quantum Cheshire cats
 - Anomalous weak values
 - Protective measurement

Convergence: QF Workshop 6/24/2015 - 3 / 47

^aY. Aharonov and D. Rohrlich, "Quantum Paradoxes" (Wiley, 2005).

The two most meaningless words in physics

LPPS paradoxes

BS Contextuality

Non-BS contextual model

AS Contextuality

Discussion and Conclusions

"Classical"

"Quantum"

Convergence: QF Workshop 6/24/2015 - 4 / 47

Three box paradox

LPPS paradoxes

Three box paradox

BS Contextuality

Non-BS contextual model

AS Contextuality

Discussion and Conclusions

Prepare state | Measure | Is it $|\phi\rangle$? | Yes | No | Pre-selection: $|\psi\rangle=|1\rangle+|2\rangle+|3\rangle$

- Post-selection: $|\phi\rangle = |1\rangle + |2\rangle |3\rangle$
- Two possible intermediate measurements:

$$\square$$
 M_1 : Is ball in box 1? $\Pi_1 = |1\rangle\langle 1|, \quad \Pi_{2\vee 3} = |2\rangle\langle 2| + |3\rangle\langle 3|$

$$\mathbb{P}(\Pi_1|\psi,M_1,\phi)=1$$

$$\square$$
 M_2 : Is ball in box 2? $\Pi_2 = |2\rangle\langle 2|, \quad \Pi_{1\vee 3} = |1\rangle\langle 1| + |3\rangle\langle 3|$

$$\mathbb{P}(\Pi_2|\psi, M_2, \phi) = 1$$

Convergence: QF Workshop 6/24/2015 - 7 / 47

Y. Aharonov and L. Vaidman, J. Phys. A 24 pp. 2315–2328 (1991).

Before Spekkens (BS) Noncontextuality

LPPS paradoxes

BS Contextuality

BS Noncontextuality

Clifton's proof

Non-BS contextual model

AS Contextuality

Discussion and Conclusions

- Outcome determinism: At any given time, the system has a definite value for every observable.
 - □ For every orthonormal basis $\{|\psi_j\rangle\}$, precisely one of them is asigned the value 1, the rest 0.
- Noncontextuality: The outcome assigned to an observable does not depend on which other (commuting) observables it is measured with.
 - The value assigned to a basis vector does not depend on which basis it occurs in, e.g.

$$|1\rangle$$
, $|2\rangle$, $|3\rangle$

VS.

$$|1\rangle, |2\rangle + |3\rangle, |2\rangle - |3\rangle.$$

S. Kochen and E. Specker, J. Math. Mech. 1 pp. 59-87 (1967).

Convergence: QF Workshop 6/24/2015 - 9 / 47

LPPS paradoxes

BS Contextuality

BS Noncontextuality

Clifton's proof

Non-BS contextual model

AS Contextuality

Discussion and Conclusions

R. Clifton, Am. J. Phys. 61 443 (1993).

Convergence: QF Workshop 6/24/2015 - 10 / 47

Pirsa: 15060036 Page 7/28

LPPS paradoxes

BS Contextuality

BS Noncontextuality

Clifton's proof

Non-BS contextual model

AS Contextuality

Discussion and Conclusions

R. Clifton, Am. J. Phys. 61 443 (1993).

Convergence: QF Workshop 6/24/2015 - 11 / 47

Page 8/28

LPPS paradoxes

BS Contextuality

BS Noncontextuality

Clifton's proof

Non-BS contextual model

AS Contextuality

Discussion and Conclusions

All logical pre- and post-selection paradoxes are related to a proof of (BS) contextuality in the same way³.

R. Clifton, Am. J. Phys. 61 443 (1993).

³M. Leifer and R. Spekkens, *Phys. Rev. Lett.* 95 200405 (2005).

Convergence: QF Workshop 6/24/2015 - 15 / 47

LPPS paradoxes

BS Contextuality

BS Noncontextuality

Clifton's proof

Non-BS contextual model

AS Contextuality

Discussion and Conclusions

All logical pre- and post-selection paradoxes are related to a proof of (BS) contextuality in the same way³.

R. Clifton, Am. J. Phys. 61 443 (1993).

³M. Leifer and R. Spekkens, *Phys. Rev. Lett.* 95 200405 (2005).

Convergence: QF Workshop 6/24/2015 - 15 / 47

LPPS paradoxes

BS Contextuality

Non-BS contextual model

Partitioned box

AS Contextuality

Discussion and Conclusions

A non-BS contextual model

Convergence: QF Workshop 6/24/2015 - 16 / 47

Pirsa: 15060036 Page 11/28

LPPS paradoxes

BS Contextuality

Non-BS contextual model

Partitioned box

AS Contextuality

Discussion and Conclusions

"Left"-measurement:

"Right"-measurement:

M. Leifer and R. Spekkens, Int. J. Theor. Phys. 44 pp. 1977-1987 (2005).

Convergence: QF Workshop 6/24/2015 - 17 / 47

LPPS paradoxes

BS Contextuality

Non-BS contextual model

Partitioned box

AS Contextuality

Discussion and Conclusions

"Left"-measurement:

"Right"-measurement:

M. Leifer and R. Spekkens, Int. J. Theor. Phys. 44 pp. 1977-1987 (2005).

Convergence: QF Workshop 6/24/2015 - 17 / 47

LPPS paradoxes

BS Contextuality

Non-BS contextual model

Partitioned box

AS Contextuality

Discussion and Conclusions

"Left"-measurement:

Shake

"Right"-measurement:

M. Leifer and R. Spekkens, Int. J. Theor. Phys. 44 pp. 1977-1987 (2005).

Convergence: QF Workshop 6/24/2015 - 18 / 47

LPPS paradoxes

BS Contextuality

Non-BS contextual model

Partitioned box

AS Contextuality

Discussion and Conclusions

"Left"-measurement:

"Right"-measurement:

M. Leifer and R. Spekkens, Int. J. Theor. Phys. 44 pp. 1977-1987 (2005).

Convergence: QF Workshop 6/24/2015 - 18 / 47

LPPS paradoxes

BS Contextuality

Non-BS contextual model

Partitioned box

AS Contextuality

Discussion and Conclusions

- We can reproduce the predictions of the three-box paradox exactly by adding more states and changing the update rule.
 - New pre- and post-selection:

Pre-selection

Post-selection

□ Add this to state-update rule:

Convergence: QF Workshop 6/24/2015 - 19 / 47

LPPS paradoxes

BS Contextuality

Non-BS contextual model

Partitioned box

AS Contextuality

Discussion and Conclusions

Left"-measurement:

"Right"-measurement:

M. Leifer and R. Spekkens, Int. J. Theor. Phys. 44 pp. 1977-1987 (2005).

Convergence: QF Workshop 6/24/2015 - 18 / 47

LPPS paradoxes

BS Contextuality

Non-BS contextual model

AS Contextuality

Operational theories

Ontological models

Trans. Contextuality

State-update rules

Proof of contextuality

Discussion and Conclusions

After Spekkens Contextuality

Convergence: QF Workshop 6/24/2015 - 20 / 47

Pirsa: 15060036 Page 18/28

After Spekkens (AS) Noncontextuality

LPPS paradoxes

BS Contextuality

Non-BS contextual model

AS Contextuality

Operational theories

Ontological models Trans. Contextuality

State-update rules

Proof of contextuality Discussion and

Conclusions

Operational theory:

$$\mathbb{P}(m|P,M,T)$$

In quantum theory:

$$\mathbb{P}(m|P,M,T) = \operatorname{Tr}\left(E_m^M \mathcal{E}_T(\rho_P)\right)$$

R. Spekkens, Phys. Rev. A 71:052108 (2005).

Convergence: QF Workshop 6/24/2015 - 21 / 47

Ontological models

LPPS paradoxes

BS Contextuality

Non-BS contextual model

AS Contextuality

Operational theories

Ontological models

Trans. Contextuality
State-update rules

Proof of contextuality

Discussion and Conclusions

Convergence: QF Workshop 6/24/2015 - 22 / 47

Implications for state-update rules

LPPS paradoxes

BS Contextuality

Non-BS contextual model

AS Contextuality

Operational theories

Ontological models

Trans. Contextuality

State-update rules

Proof of contextuality

Discussion and Conclusions **Theorem.** Let $\{\Pi_j\}$ be a projective measurement and let \mathcal{E} be the nonselective state-update rule

$$\mathcal{E}(\rho) = \sum_{j} \Pi_{j} \rho \Pi_{j}.$$

Then,

$$\mathcal{E}(\rho) = p\rho + (1-p)\mathcal{C}(\rho),$$

where C is a completely-positive, trace-preserving map and 0 .

■ Proof for special case $\{\Pi_1,\Pi_2\}$:

$$U_1 = \Pi_1 + \Pi_2 = I \qquad \qquad U_2 = \Pi_1 - \Pi_2$$

$$\mathcal{E}(\rho) = \frac{1}{2}U_1\rho U_1^{\dagger} + \frac{1}{2}U_2\rho U_2^{\dagger} = \frac{1}{2}\rho + \frac{1}{2}U_2\rho U_2^{\dagger}.$$

Convergence: QF Workshop 6/24/2015 - 24 / 47

Proof of contextuality

LPPS paradoxes

BS Contextuality

Non-BS contextual model

AS Contextuality

Operational theories

Ontological models

Trans. Contextuality

State-update rules

Proof of contextuality

Discussion and Conclusions

 All logical pre- and post-selection paradoxes are proofs of (PS) contextuality in a similar way.

Convergence: QF Workshop 6/24/2015 - 25 / 47

Transformation noncontextuality

LPPS paradoxes

BS Contextuality

Non-BS contextual model

AS Contextuality

Operational theories

Ontological models

Trans. Contextuality

State-update rules

Proof of contextuality

Discussion and Conclusions

Definition. An ontological model is *transformation noncontextual* if, whenever

$$\mathbb{P}(m|P, M, T) = \mathbb{P}(m|P, M, S)$$

for all P, M, m, we have

$$\Gamma_T = \Gamma_S$$
.

In quantum theory, Γ_T only depends on \mathcal{E}_T .

Convergence: QF Workshop 6/24/2015 - 23 / 47

Proof of contextuality

LPPS paradoxes

BS Contextuality

Non-BS contextual model

AS Contextuality

Operational theories

Ontological models

Trans. Contextuality

State-update rules

Proof of contextuality

Discussion and Conclusions

 All logical pre- and post-selection paradoxes are proofs of (PS) contextuality in a similar way.

Convergence: QF Workshop 6/24/2015 - 25 / 47

Convergence: QF Workshop 6/24/2015 - 27 / 47

LPPS paradoxes	■ There is no such thing as a "classical" or "genuinely quantum"
BS Contextuality	phenomenon without
Non-BS contextual model	 Specifying assumptions for "classical" models.
AS Contextuality	 Specifying which aspects of the phenomenon you want to
Discussion and Conclusions	reproduce.
Conclusions	
Weak measurements	A well-motivated set of assumptions is:
0 0 0 0 0 0 0 0	 Understandable in an AS noncontextual classical probabilistic theory with restriction on knowledge = "classical".
0 0 0 0	☐ AS Contextual = "quantum".
0 0 0 0 0 0 0 0 0	On this classification LPPS paradoxes are "quantum".
0 0 0 0 0	

Convergence: QF Workshop 6/24/2015 - 27 / 47

LPPS paradoxes	■ There is no such thing as a "classical" or "genuinely quantum"
BS Contextuality	phenomenon without
Non-BS contextual model	 Specifying assumptions for "classical" models.
AS Contextuality Discussion and Conclusions Conclusions	 Specifying which aspects of the phenomenon you want to reproduce.
Weak measurements	
	A well-motivated set of assumptions is:
	 Understandable in an AS noncontextual classical probabilistic theory with restriction on knowledge = "classical".
	☐ AS Contextual = "quantum".
	On this classification LPPS paradoxes are "quantum".

Convergence: QF Workshop 6/24/2015 - 27 / 47

LPPS paradoxes		There is no such thing as a "classical" or "genuinely quantum"
BS Contextuality		phenomenon without
Non-BS contextual model		☐ Specifying assumptions for "classical" models.
AS Contextuality		□ Specifying which aspects of the phenomenon you want to
Discussion and Conclusions		reproduce.
Conclusions		
Weak measurements		A well-motivated set of assumptions is:
0 0 0 0 0 0 0 0		Understandable in an AS noncontextual classical probabilistic theory with restriction on knowledge = "classical".
e 0 0 0		☐ AS Contextual = "quantum".
0 0 0 0 0 0 0 0 0	-	On this classification LPPS paradoxes are "quantum".

Convergence: QF Workshop 6/24/2015 - 27 / 47

LPPS paradoxes BS Contextuality	There is no such thing as a "classical" or "genuinely quantum" phenomenon without
Non-BS contextual model	 Specifying assumptions for "classical" models.
AS Contextuality Discussion and Conclusions	 Specifying which aspects of the phenomenon you want to reproduce.
Conclusions	
Weak measurements	A well-motivated set of assumptions is:
0 0 0 0 0	Understandable in an AS noncontextual classical probabilistic theory with restriction on knowledge = "classical".
• • •	☐ AS Contextual = "quantum".
0 0 0 0 0 0 0	On this classification LPPS paradoxes are "quantum".