Title: Exploring the Warped Side of the Universe

Date: Jun 22, 2015 04:10 PM

URL: http://pirsa.org/15060020

Abstract: Some of the most violent events in the Universe are accompanied by spectacular warpages of space-time that travel to us in the form of gravitational waves. Gravitational waves were predicted by Einstein's theory of general relativity over a century ago, but scientists have not yet detected them directly. Learn about how we search for these tiny space-time ripples and decode the unique information they carry about mysterious events in space as far back in time as the first moments after the Big Bang.

Pirsa: 15060020 Page 1/22

Scientific

Exploring the Warped Side of the Universe

Nergis Mavalvala

Department of Physics

Massachusetts Institute of Technology

Convergence @ Perimeter Institute
June 2015

Pirsa: 15060020

Einstein's legacies

- Gravitational wave astrophysics is about to take off (within this decade)
- A number of search techniques maturing
- A new generation of terrestrial gravitational wave detectors are coming online now
- They are the most sensitive detectors ever operated → 10⁻¹⁹ m
- Quantum uncertainty imposes a fundamental limit to the detector sensitivity
- Ironically, Einstein struggled with both ideas

Pirsa: 15060020 Page 3/22

Gravitational waves (GWs)

 Prediction of Einstein's General Relativity (1916)

- Ripples of the space-time fabric
- GWs stretch and squeeze the space transverse to direction of propagation

- Emitted by accelerating massive objects
 - Neutron stars & black holes
 - Orbits, explosions, collisions
 - Deformation of rotating stars
 - The Big Bang
 - The unknown

Gravitational waves (GWs)

- Prediction of Einstein's General Relativity (1916)
- Ripples of the space-time fabric
- GWs stretch and squeeze the space transverse to direction of propagation
- Emitted by accelerating massive objects
 - Neutron stars & black holes
 - Orbits, explosions, collisions
 - Deformation of rotating stars
 - The Big Bang
 - The unknown

 $h_{GW} \sim 10^{-21}$

Page 5/22

 Gravitational radiation was first introduced by Einstein in 1916 in his seminal paper on General Relativity

 In a subsequent paper in 1918 Einstein gave the first <u>correct</u> formulation of gravitational waves

Pirsa: 15060020 Page 6/22

- Gravitational radiation was first introduced by Einstein in 1916 in his seminal paper on General Relativity
- In a subsequent paper in 1918 Einstein gave the first <u>correct</u> formulation of gravitational waves
- But he himself remained uncertain (not just of how immeasurably weak they are, but of their very existence)
- Submitted a retraction in a paper with Rosen in 1937

Pirsa: 15060020 Page 7/22

- Gravitational radiation was first introduced by Einstein in 1916 in his seminal paper on General Relativity
- In a subsequent paper in 1918 Einstein gave the first correct formulation of gravitational waves
- But he himself remained uncertain (not just of how immeasurably weak they are, but of their very existence)
- Submitted a retraction in a paper with Rosen in 1937
- Retracted the retraction after discussion with Infeld and Robertson

Pirsa: 15060020 Page 8/22

 Gravitational radiation was first introduced by Einstein in 1916 in his seminal paper on General Relativity

- In a subsequent paper in 1918 Einstein gave the first <u>correct</u> formulation of gravitational waves
- But he himself remained uncertain (not just of how immeasurably weak they are, but of their very existence)
- Submitted a retraction in a paper with Rosen in 1937
- Retracted the retraction after discussion with Infeld and Robertson
- Doubts and controversy finally subside after 1957

Pirsa: 15060020 Page 9/22

The evidence, at last

Hulse & Taylor's Binary Neutron Star System (discovered in 1974, Nobel prize in 1993)

PSR 1913 + 16

- Two neutron stars orbiting each other at 0.0015c
- One is a pulsar with its lighthouse beam pointed toward us
- Emit GWs and lose energy
- Measured change in orbital period due to GW emission

Pirsa: 15060020 Page 10/22

Pirsa: 15060020 Page 11/22

- Neutron stars
 - What is the equation of state?
 - What is the maximum mass?
 - What is the structure?
 - What is the population?
- Black holes
 - What is the population of BH with different masses?
 - Do they exist in binaries?
 - How do they form? How do they die?
 - How does Nature grow supermassive BH?
 - Are they characterized only by mass and spin?
 - Can we map BH spacetimes?

Pirsa: 15060020 Page 12/22

Some big and hard questions

- Core collapse supernovae
 - What are the explosion mechanisms?
 - What is the structure and dynamics of the progenitor star?
 - What is going on deep in the core?

- Primordial GW background
 - What processes existed in the <u>very</u> early Universe?
 - What can we learn about inflation, phase transitions, cosmic strings?

Pirsa: 15060020 Page 13/22

Pirsa: 15060020 Page 14/22

Pirsa: 15060020 Page 15/22

Simple concept, challenging implementation

Make mirrors that are very still

- Vibration isolation and thermal fluctuation control
- Probe the mirror positions using laser light
 - Ultra-high precision optical measurement
 - Manipulate quantum fluctuations of the light

Pirsa: 15060020 Page 16/22

Pirsa: 15060020 Page 17/22

The search for GRB070201

GRB 070201

- Very luminous short duration, hard gamma-ray burst
- Detected by Swift, Integral, others
- Consistent with being in M31
- Leading model for short GRBs: binary merger involving a neutron star
- Looked for a GW signal in LIGO
 - No plausible GW signal found
 - Can say with >99% confidence that GRB070201 was NOT caused by a compact binary star merger in M31
- Conclusion: it was most likely a Soft Gamma Repeater giant flare in M31

Pirsa: 15060020 Page 18/22

Pirsa: 15060020 Page 19/22

Why a global network?

- Angular response is pure quadrupole
 - Nearly omni-directional
 - Earth transparent to GW
- Pinpoint sources in sky by triangulation
 - Localization depends strongly on SNR and number of detectors
- Large duty factor (fraction of time the network has high sensitivity)
 - Need five sites to get 4 detectors operational ~85% of the time

Pirsa: 15060020 Page 20/22

Pirsa: 15060020 Page 21/22

The Dawn of GW Astrophysics

Planck + SPT + ACT + Spider

- Multiwavelength
- Foreground dust

Nanograv + EPTA + PPTA

- Better timing precision
- More sources

Space detectors

Resurrected

<u>LIGO + VIRGO +</u> <u>KAGRA</u>

- Improve sensitivity
- Better theory and data analysis
- Sky localization and EM follow-up

Pirsa: 15060020 Page 22/22