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Abstract: <p>Path integrals are at the heart of quantum field theory. In spite of their covariance and seeming simplicity, they are hard to define and
evaluate. In contrast, functional differentiation, as it is used, for example, in variational problems, is relatively straightforward. This has motivated
the development of new techniques that allow one to express functional integration in terms of functional differentiation. In fact, the new techniques
allow one to express integrals in general through differentiation. These techniques therefore add to the general toolbox for integration and integral
transforms such as the Fourier and Laplace transforms. Here, we review some of these results, we give simpler proofs and we add new results, for
example, on expressing the Laplace transform and its inverse in terms of derivatives, results that may be of use in quantum field theory, e.g., in the
context of heat traces.</p>
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Overview

The problem

e Integration is hard, harder than differentiation.

e Path integrals (which are also functional Fourier transforms)
Z[J] S /eiS[‘-"]-H‘[‘ Jo d”xD[(l.)]
are harder than functional derivatives.

e |f only integration could be expressed in terms of
differentiation! Or can it?
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Overview

Overview

e Main message?

e New, convenient methods for integration and integral
transforms such as Fourier and Laplace, using only derivatives.

e Advantages?

e Often quicker, simpler.

e Handles distributions well.

e For cases that are too hard, offers new perturbative
approaches.

e Applications to QFT

e Expresses functional integrations and functional transforms in
terms of functional differentiation.
e Offers new perturbative approaches.
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New methods

New representations of integration:

e° ' S etd

f(x) dx lim ()

e—0 (

/_x f(x)dx = lim (F(3)+ f(—=9%)) (1

o ® (—)'0'

/_?C iixlde = 2Zmdlio,) flx]

o
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New methods

Integration:

Fourier:

Laplace:

Inverse Laplace:

and:

Flfl(x)

Llf](x) =

/' f(x) dx = lim 27 f(—idy)

x—0

\/2T f(—idy) o(x)

X | =

f(—0x)

5(x)
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New methods

Integration:
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and:
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Llf](x) =
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x—0

\/2Tf( 1() )

X |+

f(—0x)

5(x)

Page 7/25



Examples

Examples for integration
Recall: o
/ f(x) dx = lim 27 f(—i0x) 0(x)

x—0

For example:

/' sin(x) e l (e”“ i e_““) L d(x)

o0 X x—0 2] —I()x

= 7 lim (e“" - e‘“‘“) (©(x) + <)

x—0

= 7wlim((©(x+1)4+c—-O(x—1)—c)

x—0
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Examples

Examples for integration

Similarly, one quickly obtains, e.g.,

/x sin®(x) de. — 3m/8

o X
/' Slnhz(x) dX — ) §
Jv —0OQ 2
/' (1—CO,,S(tX)) dx = mlt|
J —o0 ol
/' x? cos(x) & de — Ve t/4/4

(exercise)
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Examples

Examples for Fourier

Now how much harder is Fourier?

Fourier transforming is even easier than integrating!
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Examples

Examples for Fourier

Recall the new methods for integration and Fourier:

Integration: / fils) ee = |im02rr f(—idy) 0(x) Vv
Fourier: Flfl(x) = V27 f(—idy) 6(x)
Therefore:

Obtain Fourier transform simply by *not* taking the limit (and

by dividing by +/27).
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Examples

Examples for Fourier

For example, for f(x) = sin(x)/x, recall:

/— Jult) de — 2rlim L (e“" - e_“f‘) - o(x)

B x—0 2] —10x

= x lim (e”"’ — e_“*) (©(x) + )

x—0

= 7 lim (©(x +1) — ©(x — 1))

— "

By not taking the limit and by dividing by v/27, we obtain
immediately:

Flfl(x) = V/7/2 (©(x+1)—-0O(x—1))
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Examples

Examples for Fourier

Consider Fourier transform of plane waves f(x) = e™.

According to our method,
Flfl(x) = V21 f(—idy) d(x)
we obtain:

Elflce = 2w &% §(x)
- 2r x+y)

And the plane waves from a basis of the function space.
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Examples

Examples for Laplace

Recall:
[ntegration: / Flx) de = |im02r f(—idy) 0(x)
Fourier:  F[f](x) = V2w f(—idx) d(x)
|
Laplace: L[fl(x) = f(—0x) =

[nverse Laplace: ﬁ_l[f](x) = {(0x) d(x)
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Examples

Examples for Laplace

If we apply the new Laplace transform method

LIf)(x) = f(—f)x)%

to monomials f(x) = x" we obtain:

Ll = (~8)" ~ = o

Xn—-—l

And the monomials form a basis in the function space.
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Examples

Example for inverse Laplace
Consider a heat kernel trace:

hitf=Y e

n

Given h(t), the spectrum {\,} is known to be recoverable via
inverse Laplace transform.

Why? Using the new inverse Laplace transform method, namely
£ [flbc) — £(9) de)
this is easy to see:

LHA(A) = h(Byr) §(N)
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Examples

Example for inverse Laplace

Consider a heat kernel trace:

b= % e

n

Given h(t), the spectrum {\,} is known to be recoverable via
inverse Laplace transform.

Why? Using the new inverse Laplace transform method, namely
L7Hfl(x) = f(dx) d(x)
this is easy to see:

L7HAI(N) = h(dy) d(N)

Y e () = S(A = Ap)

n n
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Perturbative expansions

Associated perturbative expansions

We want to apply the new methods

Integration: / i) de = |im027r f(—idy) 0(x)
Fourier:  F[f](x) = V27 f(—idy) d(x)
M
Laplace:  L[f](x) = f(—0d) —
X

Inverse Laplace:  L7[f](x) = f(dy) 6(x)

to QFT.
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Perturbative expansions

Associated perturbative expansions

But what if in
Z[J] e /efS[f;;]-Li_]' J¢ d"x D[('J]
the action S[¢] is not suitable to solve the integral or Fourier (or

Laplace) transform with our new methods exactly?

And that's the norm of course!
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Perturbative expansions

Associated perturbative expansions

e On the basic level, what if f(x) is too complicated, e.g., for:
Flfl(x) = V27 f(—idx) 6(x)
e Opportunity: Use any regularizations of d such as or
0.1¢) — (2rrrr)_1/2&’_)‘2/2rr
to obtain, e.g.:

FIf](x) dx = V271 f(—idy) 64(x)

e Obtain weak & strong coupling expansions and others...
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Outlook

Qutlook

e What is the full size of the space of functions and
distributions to which these methods apply?

e Relation to Stoke's theorem?

/d.u:/ W
JQ J O

e Relation to fermionic integration, a unifying formalism?
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