Title: Euclidean Quantum Supergravity

Date: May 02, 2015 04:45 PM

URL: http://pirsa.org/15050147

Abstract:

Pirsa: 15050147

Euclidean Quantum Supergravity

David Tong

Based on work with Carl Turner arXiv:1408.3418

An Old Idea: Euclidean Quantum Gravity

$$\mathcal{Z} = \sum_{\text{topology}} \int \mathcal{D}g \, \exp\left(-\int d^4x \, \sqrt{g} \, \mathcal{R}\right)$$

Pirsa: 15050147 Page 3/32

An Old Idea: Euclidean Quantum Gravity

$$\mathcal{Z} = \sum_{ ext{topology}} \int \mathcal{D}g \; \exp\left(-\int d^4 x \, \sqrt{g} \, \mathcal{R}
ight)$$

INSTANTONS IN CONFORMAL GRAVITY

Andrew STROMINGER¹

Institute for Advanced Study, Princeton, New Jersey 08540, USA

Gary T. HOROWITZ²

Department of Physics, University of California, Santa Barbara, California 93106, USA

Malcolm J. PERRY3

Department of Physics, Princeton University, Princeton, New Jersey 08544, USA

Received 8 December 1983

Pirsa: 15050147 Page 4/32

A Preview of the Main Result

Kaluza-Klein Theory: $\ \mathcal{M} = \mathbb{R}^{1,d-1} imes \mathbf{S}^1$

There is a long history of quantum instabilities of these backgrounds

- Casimir Forces
- Tunneling to "Nothing"

The Main Result

Kaluza-Klein compactification of N=1 Supergravity is unstable.

$$\mathcal{W} \sim \exp\left(-\frac{\pi R^2}{4G_N} - i\sigma\right)$$

Kaluza-Klein dual photon: $\partial_{\mu}\sigma\sim rac{1}{2}\epsilon_{\mu
u
ho}F^{
u
ho}$

The Theory: *N*=1 Supergravity

$$S = \frac{M_{\rm pl}^2}{2} \int d^4x \sqrt{-g} \left(\mathcal{R}_{(4)} + \bar{\psi}_{\mu} \gamma^{\mu\nu\rho} \mathcal{D}_{\nu} \psi_{\rho} \right)$$

Pirsa: 15050147

Compactify on a Circle

$$ds_{(4)}^2 = \frac{L^2}{R^2} ds_{(3)}^2 + \frac{R^2}{L^2} \left(dz^2 + A_i dx^i \right)^2 \qquad z \in [0, 2\pi L)$$

$$\mathcal{M} = \mathbb{R}^{1,2} imes \mathbf{S}^1$$

Fields $R(x^i)$ and $A_i(x^i)$ live here

L is fiducial scale

Classical Low-Energy Physics

$$S_{\text{eff}} = \frac{M_{\text{pl}}^2}{2} \int d^4x \sqrt{-g} \,\mathcal{R}_{(4)}$$

$$= \frac{M_3}{2} \int d^3x \sqrt{-g_{(3)}} \left[\mathcal{R}_{(3)} - 2\left(\frac{\partial R}{R}\right)^2 - \frac{1}{4} \frac{R^4}{L^4} F_{ij} F^{ij} \right]$$

 $M_3 = 2\pi L M_{\rm pl}^2$

Or, if we work with the dual photon $\;\;\partial_{\mu}\sigma\sim rac{1}{2}\epsilon_{\mu
u
ho}F^{
u
ho}$

$$S_{\text{eff}} = \int d^3x \sqrt{-g_{(3)}} \left[\frac{M_3}{2} \mathcal{R}_{(3)} - M_3 \left(\frac{\partial R}{R} \right)^2 - \frac{1}{M_3} \frac{L^2}{R^4} \left(\frac{\partial \sigma}{2\pi} \right)^2 \right]$$

Goal: Understand quantum corrections to this action.

Gravitational Instantons

Pirsa: 15050147 Page 10/32

Taub-NUT

$$ds^{2} = U(\mathbf{x})d\mathbf{x} \cdot d\mathbf{x} + U(\mathbf{x})^{-1} (dz + \mathbf{A} \cdot d\mathbf{x})^{2}$$

with
$$U(\mathbf{x}) = 1 + \frac{L}{2(\mathbf{x} - \mathbf{X})}$$
 and $\nabla \times \mathbf{A} = \nabla U$

From the low-energy 3d perspective, these look like Dirac monopoles.

This is the gravitational verson of Polyakov's famous calculation.

Gross '84 Hartnoll and Ramirez '13

Doing the Computation

Action, Zero Modes, Jacobians, Determinants, Propagators....

Pirsa: 15050147 Page 12/32

The One-Loop Determinants

Supersymmetry \implies dets = 1?

Hawking and Pope '78

(Using the Gibbons-Hawking-Perry prescription for rotating the conformal factor)

Pirsa: 15050147

The One-Loop Determinants

A somewhat detailed calculation gives

Pirsa: 15050147 Page 14/32

The Superpotential

Putting all the pieces together gives

$$\mathcal{W} = C \left(\frac{\mu^2}{M_{\rm pl}^2}\right)^{41/48} \left(\frac{1}{M_{\rm pl}^2 R^2}\right)^{7/48} e^{-2\pi^2 M_{\rm pl}^2 R^2 - i\sigma}$$

$$C = \frac{\left(4e^{24\zeta'(-1)-1}\right)^{7/48}}{2(4\pi)^{3/2}}$$
 Action of Taub-NUT

How to make sense of this?

- It's not holomorphic (in the naïve complex structure)
- It's UV divergent

Perturbative Quantum Corrections

Pirsa: 15050147 Page 16/32

Finite Quantum Corrections

The classical low-energy effective action is

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} M_3 \mathcal{R}_{(3)} - M_3 \left(\frac{\partial R}{R}\right)^2 - \frac{1}{M_3} \frac{L^2}{R^4} \left(\frac{\partial \sigma}{2\pi}\right)^2$$

One loop corrections to the kinetic terms give

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(M_3 + \frac{5}{16\pi} \frac{L}{R^2} \right) \mathcal{R}_{(3)} - \left(M_3 - \frac{1}{6\pi} \frac{L}{R^2} \right) \left(\frac{\partial R}{R} \right)^2 - \left(M_3 + \frac{11}{24\pi} \frac{L}{R^2} \right)^{-1} \frac{L^2}{R^4} \left(\frac{\partial \sigma}{2\pi} \right)^2$$

Pirsa: 15050147 Page 17/32

Finite Quantum Corrections

The classical low-energy effective action is

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} M_3 \mathcal{R}_{(3)} - M_3 \left(\frac{\partial R}{R}\right)^2 - \frac{1}{M_3} \frac{L^2}{R^4} \left(\frac{\partial \sigma}{2\pi}\right)^2$$

One loop corrections to the kinetic terms give

$$\mathcal{L}_{\text{eff}} = \frac{1}{2} \left(M_3 + \frac{5}{16\pi} \frac{L}{R^2} \right) \mathcal{R}_{(3)} - \left(M_3 + \frac{1}{6\pi} \frac{L}{R^2} \right) \left(\frac{\partial R}{R} \right)^2$$
$$- \left(M_3 + \left(\frac{11}{24\pi} \frac{L}{R^2} \right)^{-1} \frac{L^2}{R^4} \left(\frac{\partial \sigma}{2\pi} \right)^2$$

Something important: these two numbers are different!

The Complex Structure

The two fields R and σ must combine in a complex number

At one-loop

$$\mathcal{L}_{\text{eff}} = \left(1 - \frac{1}{6\pi} \frac{L}{M_3 R^2}\right) \left(\frac{\partial R}{R}\right)^2 + \left(1 + \frac{11}{24\pi} \frac{L}{M_3 R^2}\right)^{-1} \frac{L^2}{R^4} \left(\frac{\partial \sigma}{2\pi}\right)^2$$

We want to write this in the form

$$\mathcal{L}_{\text{eff}} = \frac{\partial^2 K(\mathcal{S}, \mathcal{S}^{\dagger})}{\partial S \partial S^{\dagger}} \, \partial \mathcal{S} \partial \mathcal{S}^{\dagger}$$

$$S = 2\pi^2 M_{\rm pl}^2 R^2 + \frac{7}{48} \log(M_{\rm pl}^2 R^2) + i\sigma$$

Pirsa: 15050147

The Superpotential is now Holomorphic

$$W = C \left(\frac{\mu^2}{M_{\rm pl}^2}\right)^{41/48} \left(\frac{1}{M_{\rm pl}^2 R^2}\right)^{7/48} e^{-2\pi^2 M_{\rm pl}^2 R^2 - i\sigma}$$

With the one-loop corrected complex structure

$$S = 2\pi^2 M_{\rm pl}^2 R^2 + \frac{7}{48} \log(M_{\rm pl}^2 R^2) + i\sigma$$

Pirsa: 15050147 Page 20/32

Divergences at One-Loop

't Hooft and Veltman '74 Deser, Kay and Stelle '77

At one-loop in pure gravity, there are three logarithmic divergences

$$\mathcal{R}^2$$
 , $\mathcal{R}_{\mu\nu}\mathcal{R}^{\mu\nu}$, $\mathcal{R}_{\mu\nu\rho\sigma}\mathcal{R}^{\mu\nu\rho\sigma}$

These two can be absorbed by a field redefinition of the metric

The Riemann² term can be massaged into Gauss-Bonnet.

$$\chi = \frac{1}{8\pi^2} \int d^4x \, \mathcal{R}_{\mu\nu\rho\sigma} \mathcal{R}^{\mu\nu\rho\sigma} - 4\mathcal{R}_{\mu\nu} \mathcal{R}^{\mu\nu} + \mathcal{R}^2$$

This is purely topological. It doesn't affect perturbative physics around flat space.

Pirsa: 15050147 Page 21/32

The Gauss-Bonnet Term

$$S_{\alpha} = \frac{\alpha}{8\pi^2} \int d^4x \, \mathcal{R}_{\mu\nu\rho\sigma} \mathcal{R}^{\mu\nu\rho\sigma} - 4\mathcal{R}_{\mu\nu} \mathcal{R}^{\mu\nu} + \mathcal{R}^2 = \alpha\chi$$

The coupling runs logarithmically

$$\alpha(\mu') = \alpha(\mu) - \alpha_1 \log\left(\frac{\mu^2}{{\mu'}^2}\right)$$

where the beta function is given by

Christensen and Duff '78 Perry '78; Yoneya '78

$$\alpha_1 = \frac{1}{48 \cdot 15} \left(848N_2 - 233N_{3/2} - 52N_1 + 7N_{1/2} + 4N_0 \right)$$

For us..

$$\alpha_1 = 41/48$$

Pirsa: 15050147 Page 22/32

The Superpotential is now Finite

If we include the running of the Gauss-Bonnet term

$$\mathcal{W} = C \left(\frac{\mu^2}{M_{\rm pl}^2}\right)^{41/48} e^{-\mathcal{S}} e^{-\alpha(\mu)} = C \left(\frac{\Lambda_{\rm grav}^2}{M_{\rm pl}^2}\right)^{41/48} e^{-\mathcal{S}}$$

With the RG invariant scale

$$\Lambda_{\rm grav} = \mu \exp\left(-\frac{\alpha(\mu)}{2\alpha_1}\right)$$

Pirsa: 15 Note: in supergravity $\Lambda_{
m grav}$ is naturally complexified by the gravitational theta-angle.

Conclusions

Kaluza-Klein compactification of N=1 supergravity is unstable

$$\mathcal{W} = C \left(\frac{\Lambda_{\mathrm{grav}}^2}{M_{\mathrm{pl}}^2}\right)^{41/48} e^{-\mathcal{S}}$$

The superpotential depends on a "hidden" scale $\,\Lambda_{grav}$

Where else does this scale show up?

Happy Birthday Gary!

Pirsa: 15050147 Page 25/32

Extra Material

Pirsa: 15050147 Page 26/32

The Boundary of the Space

The boundary of Taub-NUT is not the same as the boundary of flat space.

$$\partial(\mathbb{R}^3 imes \mathbf{S}^1) = \mathbf{S}^2 imes \mathbf{S}^1 \quad ext{ but } \quad \partial(\mathrm{TN}_k) = \mathbf{S}^3/\mathbf{Z}_k$$

Should we include such geometries in the path integral?

Pirsa: 15050147 Page 27/32

The Boundary of the Space

The boundary of Taub-NUT is not the same as the boundary of flat space.

$$\partial(\mathbb{R}^3 imes \mathbf{S}^1) = \mathbf{S}^2 imes \mathbf{S}^1 \quad ext{ but } \quad \partial(\mathrm{TN}_k) = \mathbf{S}^3/\mathbf{Z}_k$$

Should we include such geometries in the path integral?

Yes!

The Boundary of the Space

The boundary of Taub-NUT is not the same as the boundary of flat space.

$$\partial(\mathbb{R}^3 imes \mathbf{S}^1) = \mathbf{S}^2 imes \mathbf{S}^1 \quad ext{ but } \quad \partial(\mathrm{TN}_k) = \mathbf{S}^3/\mathbf{Z}_k$$

Should we include such geometries in the path integral?

Yes!

c.f. Atiyah-Hitchin with boundary a circle fibre over *RP*² for which the answer is no!

The Determinants

In a self-dual background, you can write the determinants as

$$\det = \frac{\det' \mathcal{D}^{\dagger} \mathcal{D}}{\det \mathcal{D} \mathcal{D}^{\dagger}} \bigg|_{\text{spin}-3/2}^{1/4} \frac{\det' \mathcal{D}^{\dagger} \mathcal{D}}{\det \mathcal{D} \mathcal{D}^{\dagger}} \bigg|_{\text{spin}-1/2}^{-1/2}$$

Pirsa: 15050147

The Superpotential

The calculation gives

$$\mathcal{W} = C \left(\frac{\mu^2}{M_{\rm pl}^2}\right)^{41/48} \left(\frac{1}{M_{\rm pl}^2 R^2}\right)^{7/48} e^{-S_{\rm TN}-i\sigma} e^{-\tau_{\rm grav}}$$

$$C = \frac{\left(4e^{24\zeta'(-1)-1}\right)^{7/48}}{2(4\pi)^{3/2}}$$
 Topological terms

All the pieces now fit together

$$\mathcal{W} = C \left(\frac{\Lambda_{\text{grav}}^2}{M_{\text{pl}}^2} \right)^{41/48} e^{-\mathcal{S}}$$

Pirsa. With
$$\mathcal{S}=2\pi^2M_{
m pl}^2R^2+rac{7}{48}\log(M_{
m pl}^2R^2)+i\sigma$$

First...to

Henriette Elvang Veronika Hubeny Don Marolf

Thank you!

Pirsa: 15050147 Page 32/32