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General relativity and the cuprates

Gary T. Horowitz and Jorge E. Santos
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ABSTRACT: We add a periodic potential to the simplest gravitational model of a supercon-
ductor and compute the optical conductivity. In addition to a superfluid component, we
find a normal component that has Drude behavior at low frequency followed by a power law
fall-off. Both the exponent and coefficient of the power law are temperature independent
and agree with earlier results computed above 1.. These results are in striking agreement
with measurements on some cuprates. We also find a gap A = 4.0 7T}, a rapidly decreasing
scattering rate, and “missing spectral weight” at low frequency, all of which also agree with
experiments.

KEYwoORDS: Holography and condensed matter physics (AdS/CMT), Gauge-gravity cor-
respondence, AdS-CFT Correspondence
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Bloch vs. Peierls
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Memory functions, holography, and hydrodynamics
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Transport with hyperscaling violation
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Quasiparticle transport in metals:

¢ Compute the scattering rate of charged quasiparti-
cles off phonons: this leads to Bloch’s law (1930) : a
resistivity p(T) ~ T°.

Phonons
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Quasiparticle transport in metals:

e Compute the scattering ra - —
cles off phonons: this leads
resistivity p(T) ~ T°.

ASHCROFT MERMIN

However, this ignores
“phonon drag” | SOLID STATE PHYSICS

PHONON DRAG

Peierls*® pointed out a way in which the low temperature resistivity might decline
more rapidly than T°.
Page 7/51
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Quasiparticle transport in metals:

e Compute the scattering ra - —
cles off phonons: this leads
resistivity p(T) ~ T°.

ASHCROFT MERMIN

However, this ignores
“phonon drag”

PHONON DRAG

Peierls*® pointed out a way in which the low temperature resistivity might decline
more rapidly than T°. This behavior has yet to be observed, .
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Rates of Momentum Flow
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Rates of Momentum Flow
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|. Quasiparticle transport in ordinary metals

Bloch vs. Peierls
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2. Transport without quasiparticles in strange metals

Memory functions, holography, and hydrodynamics

N

y

3. The spin density wave quantum critical point
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universal constraints on transport

g hydrodynamics 4 ‘

long time dynamics;

few conserved guantities “renormalized IR fluid”
emerges
perturbative ‘
: limit
memory matrix > holography
appropriate microscopics matrix large N theory;

for cuprates non-perturbative computations
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Electrical transport at a strongly-coupled critical theory
with particle-hole symmetry, obeying hyperscaling,
in d spatial dimensions with dynamic critical exponent z

o =0 ~ T2/

[FOHOWS from gauge invariance}

(o = 1/p = conductivity)
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Electrical transport at a strongly-coupled critical theory
without particle-hole symmetry,
with a conserved momentum P

Q2
M

o (w)

0O =0Q -

with Q = x, p, and M = xp, p, thermodynamic response functions

Obtained in hydrodynamics, holography, and
by memory functions
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Electrical transport at a strongly-coupled critical theory
without particle-hole symmetry,
with an almost conserved momentum P

Q- 1
M (—iw + 1/’7’L)

with OQ = x5, . p, and M = xp, p, thermodynamic response functions

0O =0Q -

Obtained in hydrodynamics, holography, and
by memory functions
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Electrical transport at a strongly-coupled critical theory
without particle-hole symmetry,
with an almost conserved momentum P

Q- 1
M (—iw + 1/’7’L)

Momentum relaxation by an external source hj, coupling to the operator O

0O =0Q -

H — HO—/ddth(x)O(x).

R
M . Im (G (g, w)) . :
— = lim [ d%|h(q)*¢? "o | higher orders in hy
g w—0 w
Obtained by memory functions
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universal constraints on transport

g hydrodynamics 4 ‘

long time dynamics;

few conserved guantities “renormalized IR fluid”
emerges
perturbative ‘
: limit
memory matrix > holography
appropriate microscopics matrix large N theory;

for cuprates non-perturbative computations
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universal constraints on transport

g hydrodynamics

long time dynamics;
“renormalized IR fluid”
emerges

few conserved quantities

perturbative

: limit

appropriate microscopics matrix large N theory;
for cuprates non-perturbative computation
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Holography conformal field theory: AdS/CFT

g Gravity in d + 1
spatial dimensions, y o
with a black-hole spatia

\hOTIZOIl at 1" > 0 B

\

(ACFTin

dimensions

M’

T <

Emergent
“holographic”
dimension

Solvable models which have led to new
insights on the transport propertigs, of
quantum matter without quasiparticles




Holography of a strange metal: a charged black hole

(
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Horizon of a

charged
black hole
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“holographic”
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Solvable models which have led to new
insights on the transport propertigs, of
quantum matter without quasiparticles




Optical Conductivity with Holographic Lattices
JHEP 1207 (2012) 168

[Gary T. Horowitz CLJ Jorge E. Santos®, David Tong”

We add a gravitational background lattice to the simplest holographic model of matter at
finite density and calculate the optical conductivity. With the lattice, the zero frequency delta
function found in previous calculations (resulting from translation invariance) is broadened
and the DC conductivity is finite. The optical conductivity exhibits a Drude peak with a
cross-over to power-law behavior at higher frequencies. Surprisingly, these results bear a
strong resemblance to the properties of some of the cuprates.

H = HO—/ddth(az)O(az).

Computed o by numerical solution of Einstein equations. Found
excellent agreement with memory function expression evaluated
holographically for theory Hj.
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Optical Conductivity with Holographic Lattices
JHEP 1207 (2012) 168

[Gary T. Horowitz CLJ Jorge E. Santos®, David Tong”

We add a gravitational background lattice to the simplest holographic model of matter at
finite density and calculate the optical conductivity. With the lattice, the zero frequency delta
function found in previous calculations (resulting from translation invariance) is broadened
and the DC conductivity is finite. The optical conductivity exhibits a Drude peak with a
cross-over to power-law behavior at higher frequencies. Surprisingly, these results bear a
strong resemblance to the properties of some of the cuprates.

H = HO—/ddth(az)O(az).

Computed o by numerical solution of Einstein equations. Found
excellent agreement with memory function expression evaluated
holographically for theory Hj.

Proof of equivalence between holography (for a large class of

background metrics) and memory function formula for 77,
R A. Lucas, JHEP 03, 071 (2015)




universal constraints on transport

g hydrodynamics

long time dynamics;
“renormalized IR fluid”
emerges

few conserved quantities

perturbative

: limit

appropriate microscopics matrix large N theory;
for cuprates non-perturbative computation
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universal constraints on transport

g hydrodynamics 4 ‘

long time dynamics;
few conserved guantities “renormalized IR fluid”

emerges
perturbative ‘

: limit

memory matrix holography

appropriate microscopics | matrix large N theory;
for cuprates non-perturbative computations

Pirsa: 15050139 Page 30/51

A '] 1 ~ P~ 1 '] AW &) I =A™ A Ay 4



Electrical transport at a strongly-coupled critical theory
without particle-hole symmetry,
with an almost conserved momentum P

Q- 1
M (—iw + 1/’7’L)

with OQ = x5, . p, and M = xp, p, thermodynamic response functions

0O =0Q -

Obtained in hydrodynamics, holography, and
by memory functions
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Electrical transport at a strongly-coupled critical theory
without particle-hole symmetry, with an almost conserved

momentum P, and an applied magnetic field B

—1 . 2 2 2
T, - —w)Mop + Q¢ + Beo il
Opx — (L ) = < M(——iw)»

Q?B? 1 (17" — iw)M + BPog)?

2(7; " —iw)Mog + Q2 + B?0, BO
Ty = :
Y Q2B 4 (17! —iw)M + B20g)?

Obtained in hydrodynamics, holography, and

by memory functions

S.A. Hartnoll, P. K. Kovtun, M. Miiller, and S. Sachdev, PRB 76, 144502 (2007)
M. Blake and A. Donos PRL II4 021601 (2015)
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Electrical transport at a strongly-coupled critical theory
without particle-hole symmetry, with an almost conserved
momentum P, and an applied magnetic field B

Q?B? 1 (17" — iw)M + BPog)?

2(7; " —iw)Mog + Q2 + B?0, BO
Ty = :
Y Q2B 4 (17! —iw)M + B20g)?

—1 . 2 2 2
T —w)Mop + O° + B4o il
Ogpx — (L ) = ) M(——zw),

\.

-
Blake and Donos: With g ~ 1/T and 71, ~ 1/T?, we obtain o, ~ 1/T

and tan(fp) = 04y /0ze ~ 1/T?, in agreement with strange metal data
on cuprates (such data cannot be explained in a quasiparticle model).

\

J
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Obtained in hydrodynamics, holography, and

by memory functions

S.A. Hartnoll, P. K. Kovtun, M. Miiller, and S. Sachdev, PRB 76, 144502 (2007)
M. Blake and A. Donos PRL II4 021601 (2015)
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Outline

|. Quasiparticle transport in ordinary metals

Bloch vs. Peierls

2. Transport without quasiparticles in strange metals

Memory functions, holography, and hydrodynamics
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Transport with hyperscaling violation




universal constraints on transport

g hydrodynamics 4 ‘

long time dynamics;

few conserved guantities “renormalized IR fluid”
emerges
perturbative ‘
: limit
memory matrix > holography
appropriate microscopics matrix large N theory;

for cuprates non-perturbative computations
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universal constraints on transport

hydrodynamics - ‘

long time dynamics;
“renormalized IR fluid”
emerges

few conserved quantities

perturbative

: limit
memory matrix > holography

matrix large N theory;
non-perturbative computations

Jppropriate microscopics
for cuprates
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Fermi surfacetantiferromagnetism

Metal with “large”
Fermi surface

The electron spin polarization obeys

(8(e,7)) = @(x, 7)e™

where K is the ordering wavevector.
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Fermi surfacetantiferromagnetism

VAN
| B
"N

(@) # 0 (#) =0
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Increasing interaction



Metal with “large” Fermi surface ™



e Fermi surfaces translated by K = (7, n=
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l.ow energy theory for critical point near hot-spots



Hot-spot theory has fermions 1 o (with Fermi velocities v 2)
and boson order parameter ¢, and a “Yukawa” coupling A.
This theory is particle-hole symmetric.

\ Al

1 fermions
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o (w)

0O =0Q -

M

There 1s a natural separation into the two contri-
butions to transport:

e Particle-hole symmetric hot-spot theory yields
the value of og.

e Remaining “cold” regions of the Fermi sur-
face yield the contribution of the (nearly)
conserved momentum mode.
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o (w)

0O =0Q -

M

There 1s a natural separation into the two contri-
butions to transport:

e Particle-hole symmetric hot-spot theory yields
the value of og.

e Remaining “cold” regions of the Fermi sur-
face yield the contribution of the (nearly)
conserved momentum mode.

But, all known particle-hole symmetric, strongly
coupled critical theories obey hyperscaling, and so
Pirsa: 150501%18,‘/..e O.Q e TO in d — 2. Page 45/51




Hot-spot theory has fermions 1 o (with Fermi velocities v 2)
and boson order parameter ¢, and a “Yukawa” coupling A.
This theory is particle-hole symmetric.

\ Al Vo
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Hot-spot theory has fermions 1 o (with Fermi velocities v 2)
and boson order parameter ¢, and a “Yukawa” coupling A.
This theory is particle-hole symmetric.

Renormalized Fermi surface has &k, ~ k; In(1/k;)

ky

L.

T
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A RG fixed point for the spin density wave critical
point has recently been found by Shouvik Sur and
Sung-Sik Lee (PRB 91, 125136 (2015)) using a

novel e-expansion.

e We find that the presence of gapless lines
of zero energy excitations at this fixed point
leads to hyperscaling violation.

e Upto logarithmic corrections, we find the en-
tropy density S ~ T(2=9/z and oQ ~ iz
with 6 =1, and z =1+ O(e).
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A RG fixed point for the spin density wave critical
point has recently been found by Shouvik Sur and
Sung-Sik Lee (PRB 91, 125136 (2015)) using a

novel e-expansion.

e We find that the presence of gapless lines
of zero energy excitations at this fixed point
leads to hyperscaling violation.

e Upto logarithmic corrections, we find the en-
tropy density S ~ T(2=9/z and oQ ~ iz
with 6 =1, and z =1+ O(e).

The observed values o ~ 1/T and 77, ~ 1/T% are
not too different!
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universal constraints on transport

g hydrodynamics 4 ‘

long time dynamics;

few conserved guantities “renormalized IR fluid”
emerges
perturbative ‘
: limit
memory matrix > holography
appropriate microscopics matrix large N theory;

for cuprates non-perturbative computations
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